1
|
Moon SH, Shin SJ, Shim GY, Kim HJ, Oh S, Kim SH, Bae JM. Inhibitory effects of Colocasia antiquorum var. esculenta varnish on inflammation and alveolar bone loss in a rat ligature-induced periodontitis model. Dent Mater J 2025; 44:86-92. [PMID: 39756978 DOI: 10.4012/dmj.2024-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We aimed to evaluate whether Colocasia antiquorum var. esculenta (CA) mixed with experimental varnish inhibits inflammation and alveolar bone loss in a rat ligature-induced periodontitis model. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) were tested and cell viability of CA were also evaluated. The varnish mixed with CA (CAV) was applied to ligature site of Sprague-Dawley rats and alveolar bone loss and cytokines were measured. CA exhibited a MIC of 31.3 μg/mL and an MBC of 62.5 μg/mL against Porphyromonas gingivalis, with no cytotoxicity. The CAV group exhibited significantly lower levels of alveolar bone loss than the PC group (p<0.05). The expression of IL-1β, TNF-α, and IL-6 was significantly decreased, while that of Runx2 was significantly increased in the CAV than in the PC group (p<0.05). In conclusion, CAV demonstrated the potential to improve the symptoms of periodontitis.
Collapse
Affiliation(s)
- Seong-Hee Moon
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University
- Jeonbuk Institute for Food Bio-industry
| | - Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University
| | - Gyu-Yeon Shim
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Hyun-Jin Kim
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University
- Department of Oral Anatomy, College of Dentistry, Wonkwang University
| | - Seunghan Oh
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Seong-Hwan Kim
- Innovative Target Research Center, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology
| | - Ji-Myung Bae
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Musculoskeletal and Immune Disease Research Institute, Wonkwang University
| |
Collapse
|
2
|
Li Y, Selvaraj V, Saravanan S, Abullais SS, Wankhade V. Exploring the osteogenic potential of chitosan-quercetin bio-conjugate: In vitro and in vivo investigations in osteoporosis models. Int J Biol Macromol 2024; 274:133492. [PMID: 38944072 DOI: 10.1016/j.ijbiomac.2024.133492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Anti-osteoporotic agents are clinically employed to improve bone health and prevent osteoporotic fractures. In the current study, we investigated the potential of chitosan-quercetin bio-conjugate as an anti-osteoporotic agent. The conjugate was prepared and characterized by FTIR and found notable interactions between chitosan and quercetin. Treating mouse MSCs with the bioconjugate in osteogenic conditions for a week led to elevated expression of differentiation markers Runx2, ALP, and Col-I, as determined by real-time PCR analysis. Evaluation at the cellular level using alizarin red staining demonstrated enhanced calcium deposition in MSCs following treatment with the bioconjugate. Likewise, ELISA analysis showed significantly elevated levels of secretory osteocalcin and osteonectin in groups treated with the conjugate. To broaden our comprehension, we utilized a zebrafish-based in vivo model of dexamethasone-induced osteoporosis to investigate bone regeneration. Toxicity profiling with zebrafish larvae confirmed the bio-conjugate's compatibility at a concentration of 25 μg/ml, underscoring the significance of finding the right dosage. Furthermore, in zebrafish models of osteoporosis, the bio-conjugate demonstrated significant potential for bone regeneration, as indicated by improved bone calcification, callus formation, and overall bone healing in a tail fin fracture model. Additionally, the study revealed that the bio-conjugate inhibited osteoclastic activity, leading to reduced TRAP activity and hydroxyproline release, suggesting its effectiveness in mitigating bone resorption. In conclusion, our research provides compelling evidence for the osteogenic capabilities of the chitosan-quercetin bio-conjugate, highlighting its promising applications in regenerative medicine and the treatment of conditions like osteoporosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Joint Surgery and Sports Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai - 600 036, Tamil Nadu, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Science, King Khalid University, College of Dentistry, Abha, Saudi Arabia
| | - Varsha Wankhade
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
3
|
Son JL, Oh S, Kim SH, Bae JM. Antibacterial activities of phytochemicals against Porphyromonas gingivalis with and without experimental fluoride varnish for periodontal disease prevention. Dent Mater J 2024; 43:477-484. [PMID: 38719582 DOI: 10.4012/dmj.2023-294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We aimed to evaluate the antibacterial activity of phytochemicals with or without an experimental fluoride varnish against Porphyromonas gingivalis. Five phytochemicals, chrysophanol (CHR), emodin (EMO), anthrarufin (ANT), bavachalcone (BCC), and isobavachromene (IBC), were tested using agar diffusion, minimal inhibition concentration (MIC), and minimum bacterial concentration (MBC) assays. We also assessed the cell viability and cytotoxicity of phytochemicals. All phytochemicals showed clear inhibition zones in the agar diffusion test. The inhibition zones of all phytochemical-containing fluoride varnishes were similar to or larger than that of the positive control, excluding that of 1 mM EMO. With or without the fluoride varnish, BCC exhibited the lowest MIC and MBC levels. Cell viability was high in the presence of all phytochemicals except 200 μM EMO. In conclusion, BCC was most effective as a phytochemical alone, while all phytochemical-containing fluoride varnishes inhibited P. gingivalis growth without cytotoxicity.
Collapse
Affiliation(s)
- Ju-Lee Son
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Seunghan Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Institute of Biomaterials & Implant, Wonkwang University
| | - Seong Hwan Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology
| | - Ji-Myung Bae
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Institute of Biomaterials & Implant, Wonkwang University
- Musculoskeletal and Immune Disease Research Institute, Wonkwang University
| |
Collapse
|
4
|
Shin SJ, Moon SH, Kim HJ, Oh SH, Bae JM. Oral Microbiome Using Colocasia antiquorum var. esculenta Extract Varnish in a Mouse Model with Oral Gavage of P. gingivalis ATCC 53978. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040506. [PMID: 35454345 PMCID: PMC9029942 DOI: 10.3390/medicina58040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective: There is increasing interest in preventing periodontitis using natural products. The purpose of this study was to investigate the effect of Colocasia antiquorum var. esculenta (CA) varnish on the oral microbiome and alveolar bone loss in a mouse periodontitis model. Materials and Methods: Antibacterial activity against Porphyromonas gingivalis (P. gingivalis) ATCC 53978 and cell cytotoxicity using CCK-8 on L929 cells were measured. Balb/c mice were assigned into five groups (negative control, positive control, CA in drinking water, varnish, and CA varnish). P. gingivalis was administered to the mice by oral gavage three times. After sacrifice, the oral microbiome and the levels of the inflammatory cytokine IL-1β and matrix metalloproteinase-9 were analyzed. Alveolar bone loss was measured using micro-computed tomography. Results: CA extract showed an antibacterial effect against P. gingivalis (p < 0.05) and showed no cytotoxicity at that concentration (p > 0.05). Although alpha diversity of the oral microbiome did not statistically differ between the groups (p > 0.05), the relative abundance of dominant bacteria tended to be different between the groups. The inflammatory cytokine IL-1β was reduced in the CA varnish group (p < 0.05), and no difference was observed in MMP-9 expression and alveolar bone loss (p > 0.05). Conclusions: CA varnish did not affect the overall microflora and exhibited an anti-inflammatory effect, suggesting that it is possibility a suitable candidate for improving periodontitis.
Collapse
Affiliation(s)
- Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
| | - Seong-Hee Moon
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Hyun-Jin Kim
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Department of Oral Anatomy, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Seung-Han Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Ji-Myung Bae
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Correspondence: ; Tel.: +82-63-850-6859
| |
Collapse
|
5
|
Effects of Colocasia antiquorum var. Esculenta Extract In Vitro and In Vivo against Periodontal Disease. ACTA ACUST UNITED AC 2021; 57:medicina57101054. [PMID: 34684091 PMCID: PMC8537912 DOI: 10.3390/medicina57101054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Periodontal disease is a chronic inflammatory disease in which gradual destruction of tissues around teeth is caused by plaque formed by pathogenic bacteria. The purpose of this study was to evaluate the potential of 75% ethanol extract of Colocasia antiquorum var. esculenta (CA) as a prophylactic and improvement agent for periodontal disease in vitro and in vivo. Materials and Methods: The antimicrobial efficacy of CA against Porphyromonas gingivalis (P. gingivalis, ATCC 33277) was evaluated using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) test, and cytotoxicity was confirmed by CCK-8 assay. For the in vivo study, P. gingivalis was applied by oral gavage to BALB/c mice. Forty-two days after the first inoculation of P. gingivalis, intraoral swabs were taken for microbiome analysis, and the mice were sacrificed to evaluate the alveolar bone loss. Results: The MIC of CA against P. gingivalis was 31.3 μg/mL, the MBC was 62.5 μg/mL, with no cytotoxicity. The diversity of the oral microbiome decreased in the positive control group, while those of the VA (varnish) and VCA (varnish added with CA) groups increased as much as in the negative control group, although the alveolar bone loss was not induced in the mouse model. Conclusions: CA showed antibacterial effects in vitro, and the VA and VCA groups exhibited increased diversity in the oral microbiome, suggesting that CA has potential for improving periodontal disease.
Collapse
|
6
|
Moon SH, Son JL, Shin SJ, Oh SH, Kim SH, Bae JM. Inhibitory Effect of Asplenium incisum on Bacterial Growth, Inflammation, and Osteoclastogenesis. ACTA ACUST UNITED AC 2021; 57:medicina57070641. [PMID: 34206271 PMCID: PMC8307819 DOI: 10.3390/medicina57070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives:Asplenium incisum, a natural plant, is known to possess numerous pharmacological and biochemical properties. However, the inhibitory effect of A. incisum against Porphyromonas gingivalis and other factors related to periodontal disease have not yet been demonstrated. This study aimed to investigate the potential of A. incisum extract as a phytotherapeutic candidate for improving periodontal diseases by assessing its antibacterial, anti-inflammatory, and anti-osteoclastogenic activities. Materials and Methods: The inhibition of proliferation of P. gingivalis by A. incisum and the sustainability of its antibacterial activity were evaluated in this study. The production of inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)) and nitric oxide (NO) from lipopolysaccharide-stimulated RAW 264.7 cells was assessed using an enzyme-linked immunosorbent assay. To identify the anti-osteoclastogenic activity, tartrate-resistant acid phosphatase (TRAP) staining and TRAP activity analyses were performed on bone marrow macrophages. Results: The proliferation of P. gingivalis was significantly inhibited by A. incisum (p < 0.001), and the antibacterial activity was sustained for up to 3 days. A. incisum showed anti-inflammatory activities by significantly decreasing the release of TNF-α, IL-6 (p < 0.05), and NO (p < 0.01). In addition, A. incisum significantly suppressed TRAP-positive cells and TRAP activity (at 30 μg/mL, p < 0.01) without causing any cytotoxicity (p > 0.05). Conclusions:A. incisum showed antibacterial, anti-inflammatory, and anti-osteoclastogenic activities, suggesting it has strong therapeutic potential against periodontal diseases.
Collapse
Affiliation(s)
- Seong-Hee Moon
- Department of Dental Biomaterials, Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea; (S.-H.M.); (S.-H.O.)
| | - Ju-Lee Son
- Department of Dental Hygiene, Wonkwang Health Science University, 514 Iksan-daero, Iksan 54538, Korea;
| | - Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea;
| | - Seung-Han Oh
- Department of Dental Biomaterials, Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea; (S.-H.M.); (S.-H.O.)
| | - Seong-Hwan Kim
- Innovative Target Research Center, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Ji-Myung Bae
- Department of Dental Biomaterials, Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea; (S.-H.M.); (S.-H.O.)
- Correspondence: ; Tel.: +82-63-850-6859
| |
Collapse
|