1
|
Liu T, Li J, Shao Z, Ma K, Zhang Z, Wang B, Zhang Y. Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med Eng Phys 2018; 56:9-15. [PMID: 29576458 DOI: 10.1016/j.medengphy.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Due to its moldability, biocompatibility, osteoconductivity and resorbability, calcium phosphate cement (CPC) is a highly promising scaffold material for orthopedic applications. However, pH changes and ionic activity during the CPC setting reaction may adversely affect cells seeded directly on CPC. Moreover, a lack of macropores in CPC limits ingrowth of new bone. The objectives of this study were to prepare macroporous CPC scaffolds via porogen leaching, using mannitol crystals as the porogen and to evaluate the in vitro proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) encapsulated in chitosan/β-glycerophosphate (C/GP) hydrogel prior to exposure to the novel CPC scaffold. MSCs were found to be adhered to the surfaces of CPC macropores via scanning electron microscopy. The viability and osteogenic differentiation of MSCs in C/GP hydrogel with or without exposure to CPC constructs containing mannitol crystals indicated that coating with C/GP hydrogel protected the cells during cement mixing and setting. In conclusion, novel, macroporous CPC scaffolds were prepared, and our data indicate that a hydrogel encapsulation-based strategy can be used to protect cells during scaffold formation. Thus, the MSC-laden CPC scaffolds show promise for the delivery of stem cells to promote bone regeneration.
Collapse
Affiliation(s)
- Tao Liu
- The 457th Hospital of PLA, Wuhan, 430012, Hubei, China
| | - Jian Li
- The 457th Hospital of PLA, Wuhan, 430012, Hubei, China
| | - Zengwu Shao
- Institute of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kaige Ma
- Institute of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhicai Zhang
- Institute of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Baichuan Wang
- Institute of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yannan Zhang
- Institute of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| |
Collapse
|
2
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Ishikawa K. Calcium Phosphate Cement. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-642-53980-0_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
5
|
In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater 2011; 7:3459-68. [PMID: 21689794 DOI: 10.1016/j.actbio.2011.05.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/24/2011] [Accepted: 05/31/2011] [Indexed: 11/23/2022]
Abstract
Calcium phosphate cements (CPCs) are frequently used as bone substitute material. Despite their superior clinical handling and excellent biocompatibility, they exhibit poor degradability, which limits bone ingrowth into the implant. Microspheres were prepared from poly(d,l-lactic-co-glycolic acid) (PLGA) and included in injectable CPCs as porogens in order to enhance its macroporosity after the polymeric microspheres had degraded. Upon degradation of the PLGA microspheres, acid is produced that enhances the dissolution rate of the CPC. However, the effect of the characteristics of PLGA microspheres on the degradation rate of CPCs has never been studied before. Therefore, the purpose of the current study was to investigate the dependence of CPC degradation on the chemical and morphological characteristics of incorporated PLGA microspheres. With respect to the chemical characteristics of the PLGA microspheres, the effects of both PLGA molecular weight (5, 17 and 44kDa) and end-group functionalization (acid-terminated or end-capped) were studied. In addition, two types of PLGA microspheres, differing in morphology (hollow vs. dense), were tested. The results revealed that, although both chemical parameters clearly affected the polymer degradation rate when embedded as hollow microspheres in CPC, the PLGA and CPC degradation rates were mainly dependent on the end-group functionalization. Moreover, it was concluded that dense microspheres were more efficient porogens than hollow ones by increasing the CPC macroporosity during in vitro incubation. By combining all test parameters, it was concluded that dense PLGA microspheres consisting of acid-terminated PLGA of 17kDa exhibited the highest and fastest acid-producing capacity and correspondingly the highest and fastest amount of porosity. In conclusion, the data presented here indicate that the combination of dense, acid-terminated PLGA microspheres with CPC emerges as a successful combination to achieve enhanced apatitic CPC degradation.
Collapse
|
6
|
Zhang J, Tancret F, Bouler J. Fabrication and mechanical properties of calcium phosphate cements (CPC) for bone substitution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.
Collapse
|
8
|
Karashima S, Takeuchi A, Matsuya S, Udoh KI, Koyano K, Ishikawa K. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam. J Biomed Mater Res A 2009; 88:628-33. [PMID: 18314899 DOI: 10.1002/jbm.a.31904] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Low-crystallinity hydroxyapatite (HAP) foam is an ideal material for bone substitutes and scaffolds for bone tissue regeneration, because its interconnected pores provide the space for cell growth and tissue penetration, and its composition induces excellent tissue response and good osteoconductivity. In this study, the feasibility of low-crystallinity HAP foam fabrication was evaluated based on the phase transformation reaction or the so-called dissolution-reprecipitation reaction of alpha-tricalcium phosphate (alpha-TCP) foam granules. When alpha-TCP foam granules were placed in water at 37 degrees C for 1 day, no reaction was observed. However, alpha-TCP foam granules set to form low-crystallinity HAP by treating it hydrothermally at 200 degrees C. The network of fully interconnected pores was retained, and porosity was as high as 82%. Pore size ranged from 50 to 300 mum with an average pore size of 160 mum. Compressive strength was 207 kPa. Although no setting reaction was observed at 37 degrees C, the setting reaction caused by the hydrothermal treatment of alpha-TCP foam granules allowed the fabrication of any shape of low-crystallinity HAP. Therefore, this method may be useful for the fabrication of bone substitutes and scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Satoshi Karashima
- Section of Biomaterials, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582 Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
9
|
SHIMOGORYO R, EGURO T, KIMURA E, MARUTA M, MATSUYA S, ISHIKAWA K. Effects of added mannitol on the setting reaction and mechanical strength of apatite cement. Dent Mater J 2009; 28:627-33. [DOI: 10.4012/dmj.28.627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ryoji SHIMOGORYO
- Japan Institute for Advanced Dentistry
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| | | | | | - Michito MARUTA
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| | - Shigeki MATSUYA
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College
| | - Kunio ISHIKAWA
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| |
Collapse
|
10
|
Dorozhkin SV. Calcium orthophosphate cements for biomedical application. JOURNAL OF MATERIALS SCIENCE 2008; 43:3028-3057. [DOI: 10.1007/s10853-008-2527-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
11
|
Nakagawa A, Matsuya S, Takeuchi A, Ishikawa K. Comparison of the Effects of Added .ALPHA.- and .BETA.-Tricalcium Phosphate on the Basic Properties of Apatite Cement. Dent Mater J 2007; 26:342-7. [PMID: 17694742 DOI: 10.4012/dmj.26.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of added alpha-tricalcium phosphate (alpha-TCP) and beta-TCP were investigated to shed light on the setting reaction of apatite cement (AC) consisting of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous8 (DCPA). Added beta-TCP showed no reactivity, and thus resulted in extended setting time and decreased mechanical strength. In contrast, alpha-TCP dissolved to supply calcium and phosphate ions after initial apatite crystal formation by the reaction of TTCP and DCPA. Although setting time was delayed because alpha-TCP was involved only in the latter reaction of apatite cement, larger apatite crystals were formed due to its addition. As a result of larger apatite crystal formation, the mechanical strength of alpha-TCP-added apatite cement increased by approximately 30%, as compared to alpha-TCP-free apatite cement.
Collapse
Affiliation(s)
- Akinari Nakagawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|