1
|
Song HY, Han JM, Kim WS, Lee JH, Park WY, Byun EB, Byun EH. Deinococcus radiodurans R1 Lysate Induces Tolerogenic Maturation in Lipopolysaccharide-Stimulated Dendritic Cells and Protects Dextran Sulfate Sodium-Induced Colitis in Mice. J Microbiol Biotechnol 2022; 32:835-843. [PMID: 35719091 PMCID: PMC9628914 DOI: 10.4014/jmb.2203.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
Deinococcus radiodurans is an extremophilic bacterium that can thrive in harsh environments. This property can be attributed to its unique metabolites that possess strong antioxidants and other pharmacological properties. To determine the potential of D. radiodurans R1 lysate (DeinoLys) as a pharmacological candidate for inflammatory bowel disease (IBD), we investigated the anti-inflammatory activity of DeinoLys in bone marrow-derived dendritic cells (BMDCs) and a colitis mice model. Lipopolysaccharide (LPS)-stimulated BMDCs treated with DeinoLys exhibited alterations in their phenotypic and functional properties by changing into tolerogenic DCs, including strongly inhibited proinflammatory cytokines (TNF-α and IL-12p70) and surface molecule expression and activated DC-induced T cell proliferation/activation with high IL-10 production. These phenotypic and functional changes in BMDCs induced by DeinoLys in the presence of LPS were abrogated by IL-10 neutralization. Furthermore, oral administration of DeinoLys significantly reduced clinical symptoms against dextran sulfate sodium-induced colitis, including body weight loss, disease activity index, histological severity in colon tissue, and lower myeloperoxidase level in mice. Our results establish DeinoLys as a potential anti-inflammatory candidate for IBD therapy.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea,Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ji Hee Lee
- Division of Pathogen Resource Management, Center for Vaccine Development Support, National Institute of Infectious Disease, National Institute of Health (NIH), Korea Disease Control and Prevention Agency, Cheongju, 28160, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea,Corresponding authors E.-B. Byun Phone: +82-63-570-3245 Fax: +82-63-570-3371 E-mail:
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, 32439, Republic of Korea,
E.-H. Byun Phone: +82-41-330-1481 Fax: +82-41-330-1489 E-mail:
| |
Collapse
|