1
|
Paudel P, Regmi KP, Kim KH, Lee JH, Oh TJ. Functional characterization and unraveling the structural determinants of novel steroid hydroxylase CYP154C7 from Streptomyces sp. PAMC26508. Heliyon 2024; 10:e39777. [PMID: 39524739 PMCID: PMC11544072 DOI: 10.1016/j.heliyon.2024.e39777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study characterized cytochrome P450 enzyme CYP154C7 from Streptomyces sp. PAMC26508, emphasizing its capability to hydroxylate steroids, especially at the 16α-position. The enzymatic assay of CYP154C7 demonstrated effective conversion across a pH range of 7.2-7.6, with optimal activity at 30 °C in the Pdx/PdR plus NADH system. Kinetic analysis on most converted steroids (androstenedione and adrenosterone) was performed which shows a greater affinity for androstenedione (K m , 11.06 ± 1.903 μM; V max, 0.0062 ± 0.0002 sec-1) compared to adrenosterone (K m , 34.50 ± 6.2 μM; V max, 0.0119 ± 0.0007 sec-1). A whole-cell system in Escherichia coli, overexpressing recombinant CYP154C7, achieved substantial conversion for steroids, indicating that CYP154C7 can also be used as a potential whole-cell biocatalyst. To gain structural insights, homology models of CYP154C7 and its homologs were constructed using CYP154C5 (PDB ID: 6TO2), refined, validated, and used for docking studies. Comparative docking analysis suggests that lysine (K236) in the active site and tyrosine (Y197) in the substrate access channel of CYP154C7 are crucial for substrate selectivity and catalytic efficiency. This study suggests that CYP154C7 could be a promising candidate for developing modified steroids, providing valuable insights for protein engineering to design commercially useful CYP steroid hydroxylases with diverse substrate specificities.
Collapse
Affiliation(s)
- Prakash Paudel
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan, 31460, Republic of Korea
| | - Kamal Prasad Regmi
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan, 31460, Republic of Korea
| | - Ki-Hwa Kim
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan, 31460, Republic of Korea
| |
Collapse
|
2
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Wang Y, Pan H, Wang F, Shen C. Microbial P450 repertoire (P450ome) and its application feasibility in pharmaceutical industry, chemical industry, and environmental protection. Biotechnol Bioeng 2024; 121:7-25. [PMID: 37767638 DOI: 10.1002/bit.28565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Cytochrome P450s (CYPs) are heme-thiolated enzymes that catalyze the oxidation of C-H bonds in a regio- and stereo-selective manner. CYPs are widely present in the biological world. With the completion of more biological genome sequencing, the number and types of P450 enzymes have increased rapidly. P450 in microorganisms is easy to clone and express, rich in catalytic types, and strong in substrate adaptability, which has good application potential. Although the number of P450 enzymes found in microorganisms is huge, the function of most of the microorganism P450s has not been studied, and it contains a large number of excellent biocatalysts to be developed. This review is based on the P450 groups in microorganisms. First, it reviews the distribution of P450 groups in different microbial species, and then studies the application of microbial P450 enzymes in the pharmaceutical industry, chemical industry and environmental pollutant treatment in recent years. And focused on the application fields of P450 enzymes of different families to guide the selection of suitable P450s from the huge P450 library. In view of the current shortcomings of microbial P450 in the application process, the final solution is the most likely to assist the application of P450 enzymes in large-scale, that is, whole cell transformation combined with engineering, fusion P450 combined with immobilization technology.
Collapse
Affiliation(s)
- Yongfa Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Hao Pan
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Fuhao Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, China
| |
Collapse
|
4
|
Subedi P, Do H, Lee JH, Oh TJ. Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides. Int J Mol Sci 2022; 23:ijms232113317. [PMID: 36362105 PMCID: PMC9655578 DOI: 10.3390/ijms232113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of β-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5.
Collapse
Affiliation(s)
- Pradeep Subedi
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
- Correspondence: (J.H.L.); (T.-J.O.); Tel.: +82-32-760-5555 (J.H.L.); +82-41-530-2677 (T.-J.O.); Fax: +82-32-760-5509 (J.H.L.); +82-41-530-2279 (T.-J.O.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea
- Correspondence: (J.H.L.); (T.-J.O.); Tel.: +82-32-760-5555 (J.H.L.); +82-41-530-2677 (T.-J.O.); Fax: +82-32-760-5509 (J.H.L.); +82-41-530-2279 (T.-J.O.)
| |
Collapse
|
5
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Malinga NA, Nzuza N, Padayachee T, Syed PR, Karpoormath R, Gront D, Nelson DR, Syed K. An Unprecedented Number of Cytochrome P450s Are Involved in Secondary Metabolism in Salinispora Species. Microorganisms 2022; 10:microorganisms10050871. [PMID: 35630316 PMCID: PMC9143469 DOI: 10.3390/microorganisms10050871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme thiolate proteins present in species across the biological kingdoms. By virtue of their broad substrate promiscuity and regio- and stereo-selectivity, these enzymes enhance or attribute diversity to secondary metabolites. Actinomycetes species are well-known producers of secondary metabolites, especially Salinispora species. Despite the importance of P450s, a comprehensive comparative analysis of P450s and their role in secondary metabolism in Salinispora species is not reported. We therefore analyzed P450s in 126 strains from three different species Salinispora arenicola, S. pacifica, and S. tropica. The study revealed the presence of 2643 P450s that can be grouped into 45 families and 103 subfamilies. CYP107 and CYP125 families are conserved, and CYP105 and CYP107 families are bloomed (a P450 family with many members) across Salinispora species. Analysis of P450s that are part of secondary metabolite biosynthetic gene clusters (smBGCs) revealed Salinispora species have an unprecedented number of P450s (1236 P450s-47%) part of smBGCs compared to other bacterial species belonging to the genera Streptomyces (23%) and Mycobacterium (11%), phyla Cyanobacteria (8%) and Firmicutes (18%) and the classes Alphaproteobacteria (2%) and Gammaproteobacteria (18%). A peculiar characteristic of up to six P450s in smBGCs was observed in Salinispora species. Future characterization Salinispora species P450s and their smBGCs have the potential for discovering novel secondary metabolites.
Collapse
Affiliation(s)
- Nsikelelo Allison Malinga
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| |
Collapse
|