1
|
Dixena B, Madhariya R, Panday A, Ram A, Jain AK. Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications. Curr Drug Deliv 2025; 22:160-180. [PMID: 38178667 DOI: 10.2174/0115672018272012231213100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods such as injections and oral administration. These advantages include preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short half-life drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic drug. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for noninvasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications. OBJECTIVE The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. METHODS Data we searched from PubMed, Google Scholar, and ScienceDirect. RESULTS In this review, we have explored the various methods of preparation of transfersomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. CONCLUSION In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.
Collapse
Affiliation(s)
- Bhupendra Dixena
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Rashmi Madhariya
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Anupama Panday
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Alpana Ram
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Akhlesh K Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| |
Collapse
|
2
|
Moussa AY, Abbas H, Zewail M, Gaafar PME, Ibrahim N. Green preparation and evaluation of the anti-psoriatic activity of vesicular elastic nanocarriers of kojic acid from Aspergillus oryzae N12: Repurposing of a dermo-cosmetic lead. Arch Pharm (Weinheim) 2024; 357:e2400410. [PMID: 39180243 DOI: 10.1002/ardp.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Psoriasis is a skin disorder characterized by impaired epidermal differentiation that is regularly treated by systemic drugs with undesirable side effects. Based on its anti-inflammatory, antiproliferative and anti-melanoma attributes, the fungal metabolite kojic acid represents an attractive candidate for anti-psoriatic research. The present work aims to investigate an efficient topical bio-friendly vesicular system loaded with kojic acid isolated from Aspergillus oryzae as an alternative way for the management of psoriasis to avoid systemic toxicity. Kojic acid-loaded spanlastics were prepared by ethanol injection technique, employing span 60 along with brij 35 and cremophor rh40 as edge activators, with the complete in vitro characterization of the developed nanoplatform. The selected formulation displayed a spherical morphology, an optimum particle size of 234.2 ± 1.65 nm, high entrapment efficiency (87.4% ± 0.84%) and significant sustained drug release compared with the drug solution. In vivo studies highlighted the superior relief of psoriasis symptoms and the ability to maintain healthy skin with the least changes in mRNA expression of inflammatory cytokines, achieved by the developed nanoplatform compared to kojic acid solution. Moreover, the in vivo histopathological studies confirmed the safety of the topically applied spanlastics. In addition, the molecular mechanism was approached through in vitro assessment of cathepsin S and PDE-4 inhibitory activities and in silico investigation of kojic acid docking in several anti-psoriatic drug targets. Our results suggest that a topically applied vesicular system loaded with kojic acid could lead to an expansion in the dermo-cosmetic use of kojic acid as a natural bio-friendly alternative for systemic anti-psoriatic drugs.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Hady MA, Darwish AB, Abdel-Aziz MS, Sayed OM. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf B Biointerfaces 2021; 211:112304. [PMID: 34959094 DOI: 10.1016/j.colsurfb.2021.112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The objective of this study was to prepare and evaluate Nystatin (NYS) loaded transfersomes to achieve better treatment of vulvovaginal candidiasis. Nystatin transferosomes were formulated utilizing thin film hydration method. A 32 full factorial design was employed to evaluate the effect of different formulation variables. Two independent variables were chosen; the ratio between lecithin surfactant (X1) was set at three levels (10-40), and the type of surfactants (X2) was set at three levels (Span 60, Span 85 and Pluronic F-127). The dependent responses were; entrapment efficiency (Y1: EE %), vesicles size (Y2: VS) and release rate (Y3: RR). Design Expert® software was utilized to statistically optimize formulation variables. The vesicles revealed high NYS encapsulation efficiency ranging from 97.35 ± 0.03 to 98.01 ± 0.20% whereas vesicle size ranged from 194.8 ± 20.42 to 400.8 ± 42.09 nm. High negative zeta potential values indicated good stability of the prepared formulations. NYS release from transfersomes was biphasic and the release pattern followed Higuchi's model. The optimized formulation (F7) exhibited spherical morphology under transmission electron microscopy (TEM). In-vitro and in-vivo antifungal efficiency studies revealed that the optimized formula F7 exhibited significant eradication of candida infestation in comparison to free NYS. The results revealed that the developed NYS transfersomes could be a promising drug delivery system to enhance antifungal efficacy of NYS.
Collapse
Affiliation(s)
- Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt
| | - Asmaa B Darwish
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt.
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Bohouth Street, Cairo 12622, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics Industrial Pharmacy, Faculty of Pharmacy, Sinai University - Kantara Branch, Egypt.
| |
Collapse
|
4
|
Elgewelly MA, Elmasry SM, Sayed NSE, Abbas H. Resveratrol-Loaded Vesicular Elastic Nanocarriers Gel in Imiquimod-Induced Psoriasis Treatment: In Vitro and In Vivo Evaluation. J Pharm Sci 2021; 111:417-431. [PMID: 34461114 DOI: 10.1016/j.xphs.2021.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
This work aimed to develop a new efficient approach for safe treatment of psoriasis. To achieve that, resveratrol-loaded spanlastics(F1-F12) were prepared and evaluated by complete in vitro characterization. The two optimal formulations (F10 and F11) had their particle size in the nano range with high entrapment efficiency and sustainable drug release. These two formulae were incorporated in carbopol 934 gel formulations (G1-G8) with different concentrations of drug and carbopol 934 polymer. G1 and G5 (1% w/w Carbopol 934 gel and 0.1% resveratrol) showed 40.13% ± 2.017% and 73.76% ± 2.46%,8 hours drug release, respectively. Their pH was accepted and non-irritant. At a shear stress of 500 s-1, G1 and G5 showed a reasonable viscosity of 1048.5 ± 2.12 cps and 954 ± 2.15 cps, respectively. In the in vivo psoriasis study, mice treated by G5 gel showed significant improvement of erythema and scaling compared to positive control group and they maintained healthy skin as shown in histopathological observations. Moreover, this group showed the least changes in mRNA expression of inflammatory cytokines. Concisely, our results suggest that selected carbopol gel of resveratrol-loaded spanlastics could maximize resveratrol topical anti-psoriatic effect.
Collapse
Affiliation(s)
| | - Soha M Elmasry
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Egypt
| | - Nesrine S El Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Egypt.
| |
Collapse
|
5
|
Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020; 12:E855. [PMID: 32916782 PMCID: PMC7559928 DOI: 10.3390/pharmaceutics12090855] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin's outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.
Collapse
Affiliation(s)
| | | | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
| |
Collapse
|
6
|
Akhter MH, Ahsan MJ, Rahman M, Anwar S, Rizwanullah M. Advancement in Nanotheranostics for Effective Skin Cancer Therapy: State of the Art. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2468187308666181116130949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
:
The skin cancer has become a leading concern worldwide as a result of high
mortality rate. The treatment modality involves radiation therapy, chemotherapy or surgery.
More often combination therapy of chemotherapeutic agents gives better solution
over single chemotherapeutic agent. The Globocon report suggested that high incidence
and mortality rate in skin cancer is growing day-to-day. This type of cancer is more prevalent
in that area where a person is highly exposed to sunlight. The nanotechnology-based
therapy is nowadays drawing attention and becoming a more important issue to be discussed.
The nanotherapy of skin cancer is dealt with various approaches and strategies.
The strategic based approaches imply nanoparticles targeting carcinoma cells, functionalized
nanoparticles for specific targeting to cancer cells, receptor-mediated active targeting
as nanoshells, nanostrutured lipid carriers, liposome, ethosome, bilosome, polymeric nanoparticle,
nanosphere, dendrimers, carbon nanotubes, quantum dots, solid lipid nanoparticles
and fullerenes which are highly efficient in specific killing of cancer cells. The passive
targeting of chemotherapeutic agents is also helpful in dealing with carcinoma due to
enhanced permeability and retention effect (EPR).
:
The article outlines nano-based therapy currently focused globally, and the outcomes of
the therapy as well.
Collapse
Affiliation(s)
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mahfoozur Rahman
- Faculty of Health Sciences, Shalom Institute of Health and Allied Sciences (SIHAS) Sam Higginbottom University of Agriculture, Technology and Sciences Allahabad, 211007, Uttar Pradesh, India
| | - Siraj Anwar
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER) Jamia Hamdard, New Delhi-110062, India
| | - Md. Rizwanullah
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER) Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
7
|
Development, optimization, and evaluation of tamsulosin nanotransfersomes to enhance its permeation and bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Abstract
Under many circumstances, prophylactic immunizations are considered as the only possible strategy to control infectious diseases. Considerable efforts are typically invested in immunogen selection but, erroneously, the route of administration is not usually a major concern despite the fact that it can strongly influence efficacy. The skin is now considered a key component of the lymphatic system with tremendous potential as a target for vaccination. The purpose of this review is to present the immunological basis of the skin-associated lymphoid tissue, so as to provide understanding of the skin vaccination strategies. Several strategies are currently being developed for the transcutaneous delivery of antigens. The classical, mechanical or chemical disruptions versus the newest approaches based on microneedles for antigen delivery through the skin are discussed herein.
Collapse
|
9
|
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23:3319-3329. [PMID: 27145899 DOI: 10.1080/10717544.2016.1177136] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.
Collapse
|
10
|
Duangjit S, Opanasopit P, Rojanarata T, Takayama J, Takayama K, Ngawhirunpat T. Bootstrap Resampling Technique to Evaluate the Reliability of the Optimal Liposome Formulation: Skin Permeability and Stability Response Variables. Biol Pharm Bull 2014; 37:1543-9. [DOI: 10.1248/bpb.b14-00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sureewan Duangjit
- Faculty of Pharmacy, Silpakorn University
- Department of Pharmaceutics, Hoshi University
| | | | | | - Jun Takayama
- Research Fellow of Japan Society for the Promotion of Science
| | | | | |
Collapse
|