1
|
Kaur S, Angrish N, Vasudevan M, Khare G. Global proteomics reveals pathways of mesenchymal stem cells altered by Mycobacterium tuberculosis. Sci Rep 2024; 14:30677. [PMID: 39730375 DOI: 10.1038/s41598-024-75722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) has a remarkable ability to persist inside host cells. Several studies showed that M. tb infects and survives inside bone marrow mesenchymal stem cells (BM-MSCs) escaping the host immune system. Here, we have identified various cellular pathways that are modulated in human BM-MSCs upon infection with virulent M. tb and the proteomic profile of these cells varies from that of avirulent M. tb infected cells. We found that virulent M. tb infection reshapes host pathways such as stem cell differentiation, alternative splicing, cytokine production, mitochondrial function etc., which might be modulated by M. tb to persist inside this unconventional niche of human BM-MSCs. Additionally, we observed that virulent M. tb infection suppresses various cellular processes. This study uncovers the differences in the host proteomic profiles resulting from the virulent versus avirulent M. tb infection that can pave the way to identify host-directed therapeutic targets for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Nupur Angrish
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genomics and Data Science Unit, Theomics International Pvt. Ltd, Bangalore, 560038, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
2
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
3
|
Bello-Rodriguez C, Wittig O, Diaz-Solano D, Bolaños P, Cardier JE. A 3D construct based on mesenchymal stromal cells, collagen microspheres and plasma clot supports the survival, proliferation and differentiation of hematopoietic cells in vivo. Cell Tissue Res 2020; 382:499-507. [PMID: 32789682 DOI: 10.1007/s00441-020-03265-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/22/2020] [Indexed: 01/09/2023]
Abstract
The hematopoietic niche is a specialized microenvironment that supports the survival, proliferation and differentiation of hematopoietic stem progenitor cells (HSPCs). Three-dimensional (3D) models mimicking hematopoiesis might allow in vitro and in vivo studies of the hematopoietic (HP) process. Here, we investigate the capacity of a 3D construct based on non-adherent murine bone marrow mononuclear cells (NA-BMMNCs), mesenchymal stromal cells (MSCs) and collagen microspheres (CMs), all embedded into plasma clot (PC) to support in vitro and in vivo hematopoiesis. Confocal analysis of the 3D hematopoietic construct (3D-HPC), cultured for 24 h, showed MSC lining the CM and the NA-BMMNCs closely associated with MSC. In vivo hematopoiesis was examined in 3D-HPC subcutaneously implanted in mice and harvested at different intervals. Hematopoiesis in the 3D-HPC was evaluated by histology, cell morphology, flow cytometry, confocal microscopy and hematopoietic colony formation assay. 3D-HPC implants were integrated and vascularized in the host tissue, after 3 months of implantation. Histological studies showed the presence of hematopoietic tissue with the presence of mature blood cells. Cells from 3D-HPC showed viability greater than 90%, expressed HSPCs markers, and formed hematopoietic colonies, in vitro. Confocal microscopy studies showed that MSCs adhered to the CM and NA-BMMNCs were scattered across the 3D-HPC area and in close association with MSC. In conclusion, the 3D-HPC mimics a hematopoietic niche supporting the survival, proliferation and differentiation of HSPCs, in vivo. 3D-HPC may allow evaluation of regulatory mechanisms involved in hematopoiesis.
Collapse
Affiliation(s)
- Carlos Bello-Rodriguez
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela.,Facultad de Ciencias, Universidad Central de Venezuela, Caracas, 1080, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, 1020-A, Venezuela
| | - Jose E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela. .,Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, 1020-A, Venezuela.
| |
Collapse
|
4
|
Bianco JER, Rosa RG, Congrains-Castillo A, Joazeiro PP, Waldman SD, Weber JF, Saad STO. Characterization of a novel decellularized bone marrow scaffold as an inductive environment for hematopoietic stem cells. Biomater Sci 2019; 7:1516-1528. [PMID: 30681075 DOI: 10.1039/c8bm01503a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to the increasing demand for a bone marrow study model, we developed a natural scaffold from decellularized bovine bone marrow (DeBM). The obtained bioscaffold was analyzed after the decellularization process; histological staining, scanning and transmission electron microscopy confirmed the preservation of its native 3D-architecture; including blood vessels and cell niches as well as the integrity of important components of the extracellular matrix; Collagen III, IV and fibronectin. In addition to biochemical composition, physical properties of the bone marrow were also conserved. We evaluated the suitability of this bio-scaffold as a tridimensional culture platform. Seeding experiments with umbilical cord-derived hematopoietic stem cells and human bone marrow stromal cell line HS5 demonstrated that this scaffold is capable of supporting hematopoietic and stromal cell adhesion and proliferation without the need of exogenous factors. DeBM provided an inductive environment for the repopulation of the bone marrow inducing the expression of SDF-1, HGF and SCF by seeded stromal cells. The presence of these potent hematopoietic chemoattractants would be crucial for ex vivo long-term culture of HSCs, and for recreating the natural microenvironment of the bone marrow for bioengineering applications. We conclude that the decellularization process succeeded in preserving the 3D structure and mechanical properties of the bone marrow. The resulting scaffold is suitable for cell culture, representing an advantageous bone marrow experimental model, and potentially an effective platform for CD34+ HSC expansion and differentiation for clinical applications.
Collapse
|
5
|
Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response. Stem Cells Int 2017; 2017:5846257. [PMID: 28191017 PMCID: PMC5278224 DOI: 10.1155/2017/5846257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/22/2016] [Accepted: 12/18/2016] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases.
Collapse
|
6
|
Ghosh LD, Ravi V, Sanpui P, Sundaresan NR, Chatterjee K. Keratin mediated attachment of stem cells to augment cardiomyogenic lineage commitment. Colloids Surf B Biointerfaces 2016; 151:178-188. [PMID: 28012406 DOI: 10.1016/j.colsurfb.2016.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 01/04/2023]
Abstract
The objective of this work was to develop a simple surface modification technique using keratin derived from human hair for efficient cardiomyogenic lineage commitment of human mesenchymal stem cells (hMSCs). Keratin was extracted from discarded human hair containing both the acidic and basic components along with the heterodimers. The extracted keratin was adsorbed to conventional tissue culture polystyrene surfaces at different concentration. Keratin solution of 500μg/ml yielded a well coated layer of 12±1nm thickness with minimal agglomeration. The keratin coated surfaces promoted cell attachment and proliferation. Large increases in the mRNA expression of known cardiomyocyte genes such as cardiac actinin, cardiac troponin and β-myosin heavy chain were observed. Immunostaining revealed increased expression of sarcomeric α-actinin and tropomyosin whereas Western blots confirmed higher expression of tropomyosin and myocyte enhancer factor 2C in cells on the keratin coated surface than on the non-coated surface. Keratin promoted DNA demethylation of the Atp2a2 and Nkx2.5 genes thereby elucidating the importance of epigenetic changes as a possible molecular mechanism underlying the increased differentiation. A global gene expression analysis revealed a significant alteration in the expression of genes involved in pathways associated in cardiomyogenic commitment including cytokine and chemokine signaling, cell-cell and cell-matrix interactions, Wnt signaling, MAPK signaling, TGF-β signaling and FGF signaling pathways among others. Thus, adsorption of keratin offers a facile and affordable yet potent route for inducing cardiomyogenic lineage commitment of stem cells with important implications in developing xeno-free strategies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Lopamudra Das Ghosh
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 India
| | - Pallab Sanpui
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India
| | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering and Indian Institute of Science, Bangalore 560012 India.
| |
Collapse
|
7
|
Choi JS, Mahadik BP, Harley BAC. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnol J 2015; 10:1529-45. [PMID: 26356030 PMCID: PMC4724421 DOI: 10.1002/biot.201400758] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/15/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body's blood and immune cells. This process takes place primarily in the bone marrow in specialized 'niche' microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders.
Collapse
Affiliation(s)
- Ji Sun Choi
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Modulating Mesenchymal Stem Cell Behavior Using Human Hair Keratin-Coated Surfaces. Stem Cells Int 2015; 2015:752424. [PMID: 26124842 PMCID: PMC4466490 DOI: 10.1155/2015/752424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/29/2015] [Accepted: 03/29/2015] [Indexed: 11/18/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have shown great potential for therapeutic purposes. However, the low frequencies of hMSCs in the body and difficulties in expanding their numbers in vitro have limited their clinical use. In order to develop an alternative strategy for the expansion of hMSCs in vitro, we coated tissue culture polystyrene with keratins extracted from human hair and studied the behavior of cells from 2 donors on these surfaces. The coating resulted in a homogeneous distribution of nanosized keratin globules possessing significant hydrophilicity. Results from cell attachment assays demonstrated that keratin-coated surfaces were able to moderate donor-to-donor variability when compared with noncoated tissue culture polystyrene. STRO-1 expression was either sustained or enhanced on hMSCs cultured on keratin-coated surfaces. This translated into significant increases in the colony-forming efficiencies of both hMSC populations, when the cells were serially passaged. Human hair keratins are abundant and might constitute a feasible replacement for other biomaterials that are of animal origin. In addition, our results suggest that hair keratins may be effective in moderating the microenvironment sufficiently to enrich hMSCs with high colony-forming efficiency ex vivo, for clinical applications.
Collapse
|