1
|
Daneshmandi L, Holt BD, Arnold AM, Laurencin CT, Sydlik SA. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci Rep 2022; 12:6960. [PMID: 35484292 PMCID: PMC9050648 DOI: 10.1038/s41598-022-10603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Bone regenerative engineering could replace autografts; however, no synthetic material fulfills all design criteria. Nanocarbons incorporated into three-dimensional printed (3DP) matrices can improve properties, but incorporation is constrained to low wt%. Further, unmodified nanocarbons have limited osteogenic potential. Functionalization to calcium phosphate graphene (CaPG) imparts osteoinductivity and osteoconductivity, but loading into matrices remained limited. This work presents ultra-high content (90%), 3DP-CaPG matrices. 3DP-CaPG matrices are highly porous (95%), moderately stiff (3 MPa), and mechanically robust. In vitro, they are cytocompatible and induce osteogenic differentiation of human mesenchymal stem cells (hMSCs), indicated by alkaline phosphatase, mineralization, and COL1α1 expression. In vivo, bone regeneration was studied using a transgenic fluorescent-reporter mouse non-union calvarial defect model. 3DP-CaPG stimulates cellular ingrowth, retains donor cells, and induces osteogenic differentiation. Histology shows TRAP staining around struts, suggesting potential osteoclast activity. Apparent resorption of 3DP-CaPG was observed and presented no toxicity. 3DP-CaPG represents an advancement towards a synthetic bone regeneration matrix.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Brian D Holt
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA.
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA.
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Cheng Y, Cheng G, Xie C, Yin C, Dong X, Li Z, Zhou X, Wang Q, Deng H, Li Z. Biomimetic Silk Fibroin Hydrogels Strengthened by Silica Nanoparticles Distributed Nanofibers Facilitate Bone Repair. Adv Healthc Mater 2021; 10:e2001646. [PMID: 33694330 DOI: 10.1002/adhm.202001646] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/13/2021] [Indexed: 11/06/2022]
Abstract
Various materials are utilized as artificial substitutes for bone repair. In this study, a silk fibroin (SF) hydrogel reinforced by short silica nanoparticles (SiNPs)-distributed-silk fibroin nanofibers (SiNPs@NFs), which exhibits a superior osteoinductive property, is fabricated for treating bone defects. SF acts as the base part of the composite scaffold to mimic the extracellular matrix (ECM), which is the organic component of a native bone. The distribution of SiNPs clusters within the composite hydrogel partially mimics the distribution of mineral crystals within the ECM. Incorporation of SiNPs@NFs enhances the mechanical properties of the composite hydrogel. In addition, the composite hydrogel provides a biocompatible microenvironment for cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo studies confirm that the successful repair is achieved with the formation of a large amount of new bone in the large-sized cranial defects that are treated with the composite hydrogel. In conclusion, the SiNPs@NFs-reinforced-hydrogel fabricated in this study has the potential for use in bone tissue engineering.
Collapse
Affiliation(s)
- Yuet Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Congyong Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Xiangyang Dong
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology School of Resource and Environmental Science Wuhan University Wuhan 430079 China
- Hubei Engineering Center of Natural Polymer‐based Medical Materials Wuhan University Wuhan 430072 China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Xue Zhou
- School of Public Health Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Qun Wang
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50014 USA
| | - Hongbing Deng
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology School of Resource and Environmental Science Wuhan University Wuhan 430079 China
- Hubei Engineering Center of Natural Polymer‐based Medical Materials Wuhan University Wuhan 430072 China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| |
Collapse
|
3
|
Sakhonenkov S, Konashuk A, Brykalova X, Cherny A, Kornilov N, Rykov Y, Filatova E, Pavlychev A. Nanostructure of bone tissue probed with Ca 2p and O 1s NEXAFS spectroscopy. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf3a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
X-ray absorption spectroscopy is applied to investigate relationships between hierarchical organization of the skeleton and nanostructure of femoral bone in knee compartments and to understand the osteoarthritis (OA) related changes at the subcellular level. Our focus is on local electronic and atomic and molecular architectonics of the medial and lateral condyles of the femur resected during total knee arthroplasty in patients with medial compartmental knee OA. The element-specific and site-dependent peculiarities in spectral distributions of oscillator strength for core-to-valence transitions are revealed. The near Ca 2p and O 1s edges x-ray absorption fine structure (Ca 2p and O 1s NEXAFS) spectra of the saw cuts demonstrate substantial redistributions in intact and OA damaged areas on the proximal side, and on the proximal and distal sides of the samples. Examining the O 1s NEXAFS spectra new chemical bonds are revealed on the proximal surface in the OA areas. Strong intra-atomic intershell Ca2+ 2
p
3
/
2
,
1
/
2
5
3
d
1
interaction specifies the great similarity of the Ca 2p NEXAFS spectra. Their analysis performed in combination with the x-ray photoelectron data has demonstrated the formation of non-apatite calcium in the OA areas of the samples. It is shown that NEXAFS spectroscopy is a powerful tool for deeper understanding relationship between hierarchical skeletal organization and nanostructure of native bone. Perspectives for development of novel methods for medical imaging and diagnosis of subchondral bone at the nanolevel are discussed.
Collapse
|
4
|
Konashuk AS, Samoilenko DO, Klyushin AY, Svirskiy GI, Sakhonenkov SS, Brykalova XO, Kuz’mina MA, Filatova EO, Vinogradov AS, Pavlychev AA. Thermal changes in young and mature bone nanostructure probed with Ca 2p excitations. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab92b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Pavlychev AA, Avrunin AS, Vinogradov AS, Filatova EO, Doctorov AA, Krivosenko YS, Samoilenko DO, Svirskiy GI, Konashuk AS, Rostov DA. Local electronic structure and nanolevel hierarchical organization of bone tissue: theory and NEXAFS study. NANOTECHNOLOGY 2016; 27:504002. [PMID: 27875332 DOI: 10.1088/0957-4484/27/50/504002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Theoretical and experimental investigations of native bone are carried out to understand relationships between its hierarchical organization and local electronic and atomic structure of the mineralized phase. The 3D superlattice model of a coplanar assembly of the hydroxyapatite (HAP) nanocrystallites separated by the hydrated nanolayers is introduced to account the interplay of short-, long- and super-range order parameters in bone tissue. The model is applied to (i) predict and rationalize the HAP-to-bone spectral changes in the electronic structure and (ii) describe the mechanisms ensuring the link of the hierarchical organization with the electronic structure of the mineralized phase in bone. To check the predictions the near-edge x-ray absorption fine structure (NEXAFS) at the Ca 2p, P 2p and O 1s thresholds is measured for native bone and compared with NEXAFS for reference compounds. The NEXAFS analysis has demonstrated the essential hierarchy induced HAP-to-bone red shifts of the Ca and P 2p-to-valence transitions. The lowest O 1s excitation line at 532.2 eV in bone is assigned with superposition of core transitions in the hydroxide OH-(H2O) m anions, Ca2+(H2O) n cations, the carboxyl groups inside the collagen and [PO4]2- and [PO4]- anions with unsaturated P-O bonds.
Collapse
Affiliation(s)
- A A Pavlychev
- Solid State Electronics Department, St. Petersburg State University, St. Petersburg, 198504, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bertazzo S, Bertran CA. Effect of hydrazine deproteination on bone mineral phase: A critical view. J Inorg Biochem 2008; 102:137-45. [PMID: 17850876 DOI: 10.1016/j.jinorgbio.2007.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 11/19/2022]
Abstract
Over the last 30 years several techniques have been developed to separate bone matrix and bone mineral, in order to allow for a study of each component independently of the other. Preservation of original characteristics of the phase studied after isolation has always been a great challenge for all such techniques. The hydrazine deproteination procedure, first proposed by Termine, has been one of the processes most widely used for studying bone mineral. It is found to be one of the most effective, notwithstanding controversy over its efficiency in bone deproteination and criticism regarding possible changes it could make to the characteristics of bone mineral. In this work, we have studied the possible chemical and physical alterations caused by the hydrazine deproteination process to bone mineral from rats and to other materials of biological interest. Materials were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), inductive coupled plasma-optical emission spectroscopy (ICP-OES), C-H-N analysis and infrared spectroscopy (FTIR), before and after hydrazine deproteination. Finally, here we present a comprehensive discussion on the criticism of hydrazine deproteination. The experimental results obtained in this work, even when compared to the results in the literature, show that most widespread criticism to the hydrazine deproteination process is not completely justified.
Collapse
Affiliation(s)
- Sergio Bertazzo
- Chemistry Institute, State University of Campinas, P.O. Box 6154, CEP 13084-862, Campinas, SP, Brazil.
| | | |
Collapse
|