1
|
Gonçalves EM, Oliveira FJ, Silva RF, Neto MA, Fernandes MH, Amaral M, Vallet-Regí M, Vila M. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater 2015; 104:1210-9. [PMID: 26089195 DOI: 10.1002/jbm.b.33432] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/12/2015] [Accepted: 03/30/2015] [Indexed: 11/09/2022]
Abstract
A three-phase [nanocrystalline hydroxyapatite (HA), carbon nanotubes (CNT), mixed in a polymeric matrix of polycaprolactone (PCL)] composite scaffold produced by 3D printing is presented. The CNT content varied between 0 and 10 wt % in a 50 wt % PCL matrix, with HA being the balance. With the combination of three well-known materials, these scaffolds aimed at bringing together the properties of all into a unique material to be used in tissue engineering as support for cell growth. The 3D printing technique allows producing composite scaffolds having an interconnected network of square pores in the range of 450-700 μm. The 2 wt % CNT scaffold offers the best combination of mechanical behaviour and electrical conductivity. Its compressive strength of ∼4 MPa is compatible with the trabecular bone. The composites show typical hydroxyapatite bioactivity, good cell adhesion and spreading at the scaffolds surface, this combination of properties indicating that the produced 3D, three-phase, scaffolds are promising materials in the field of bone regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1210-1219, 2016.
Collapse
Affiliation(s)
- Elsa M Gonçalves
- CICECO, Materials and Ceramic Engineering Department, University of Aveiro, Campus de Santiago, 3810-193, Portugal
| | - Filipe J Oliveira
- CICECO, Materials and Ceramic Engineering Department, University of Aveiro, Campus de Santiago, 3810-193, Portugal
| | - Rui F Silva
- CICECO, Materials and Ceramic Engineering Department, University of Aveiro, Campus de Santiago, 3810-193, Portugal
| | - Miguel A Neto
- CICECO, Materials and Ceramic Engineering Department, University of Aveiro, Campus de Santiago, 3810-193, Portugal
| | - M Helena Fernandes
- Fac. Medicina Dentária, Laboratory for Bone Metabolism and Regeneration, Univ. do Porto, Portugal
| | - Margarida Amaral
- CICECO, Materials and Ceramic Engineering Department, University of Aveiro, Campus de Santiago, 3810-193, Portugal
| | - María Vallet-Regí
- Facultad de Farmacia, Departamento de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Mercedes Vila
- Facultad de Farmacia, Departamento de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain.,TEMA-NRD, Mechanical Engineering Department, University of Aveiro, 3810-193, Portugal
| |
Collapse
|
3
|
Abstract
The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development.
Collapse
|