1
|
Batsukh I, Khishigjargal T, Dembereldorj U, Sambuu M, Ganbold E, Norov E. Comparative Study of Catalytic Activity of Recyclable Au/Fe 3O 4 Microparticles for Reduction Of 2,4-Dinitrophenol and Anionic, Cationic Azo Dyes. ChemistryOpen 2024; 13:e202300297. [PMID: 38624176 PMCID: PMC11633347 DOI: 10.1002/open.202300297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
We synthesized Au/Fe3O4 microparticles. Initially, citrate-capped Fe3O4 micro-sized particles were synthesized by the co-precipitation method with an excess amount of trisodium citrate. Gold ions were reduced on the surface of citrate-capped Fe3O4 and grew as gold sub-microparticles with an average diameter of 210 nm on the surface. The characteristic SPR peak of gold nanoparticles on the surface of Fe3O4 was detected at 584 nm, whereas the absorption in the near-infrared region was increased. SEM images has proved that the synthesized Au/Fe3O4 composite microparticles has an average diameter of 1.7 micrometers. The results of XRD patterns proved the existence of both crystal phases of Fe3O4 and Au particles. To investigate the catalytic activity, the reaction rate constant of reduction of 2,4-dinitrophenol (2,4-DNP) and degradation of Congo red (CR), and methylene blue (MB) with NaBH4 in the presence of Au/Fe3O4 catalyst was monitored by UV-Vis spectroscopy. The initial reaction rate constant calculated from the change in characteristic peak absorptions of 2,4-dinitrophenol was 3.97×10-3 s-1, while the reaction rate constants for the degradation of CR and MB were 9.72×10-3 s-1 and 14.25×10-3 s-1 respectively. After 5 cycles, Au/Fe3O4 microparticles preserved 99 % of the reaction rate constant, exhibiting considerable recycling efficiency in the reduction of nitro groups.
Collapse
Affiliation(s)
- Ikhbayar Batsukh
- Department of Chemical and Biological EngineeringSchool of Engineering and Applied SciencesNational University of Mongolia
- Institute of Physics and TechnologyMongolian Academy of SciencesUlaanbaatar13330Mongolia
| | - Tegshjargal Khishigjargal
- Department of Chemical and Biological EngineeringSchool of Engineering and Applied SciencesNational University of Mongolia
| | | | - Munkhtsetseg Sambuu
- Department of PhysicsSchool of Arts and SciencesNational University of Mongolia
| | | | - Erdene Norov
- Department of Chemical and Biological EngineeringSchool of Engineering and Applied SciencesNational University of Mongolia
| |
Collapse
|
2
|
Gubitosa J, Rizzi V, Fini P, Nuzzo S, Cosma P. The Adsorption Efficiency of Regenerable Chitosan-TiO 2 Composite Films in Removing 2,4-Dinitrophenol from Water. Int J Mol Sci 2023; 24:ijms24108552. [PMID: 37239896 DOI: 10.3390/ijms24108552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, the great performance of chitosan-based films blended with TiO2 (CH/TiO2) is presented to adsorb the hazardous pollutant 2,4-dinitrophenol (DNP) from water. The DNP was successfully removed, with a high adsorption %: CH/TiO2 exhibited a maximum adsorption capacity of 900 mg/g. For pursuing the proposed aim, UV-Vis spectroscopy was considered a powerful tool for monitoring the presence of DNP in purposely contaminated water. Swelling measurements were employed to infer more information about the interactions between chitosan and DNP, demonstrating the presence of electrostatic forces, deeply investigated by performing adsorption measurements by changing DNP solutions' ionic strength and pH values. The thermodynamics, adsorption isotherms, and kinetics were also studied, suggesting the DNP adsorption's heterogeneous character onto chitosan films. The applicability of pseudo-first- and pseudo-second-order kinetic equations confirmed the finding, further detailed by the Weber-Morris model. Finally, the adsorbent regeneration was exploited, and the possibility of inducing DNP desorption was investigated. For this purpose, suitable experiments were conducted using a saline solution that induced the DNP release, favoring the adsorbent reuse. In particular, 10 adsorption/desorption cycles were performed, evidencing the great ability of this material that does not lose its efficiency. As an alternative approach, the pollutant photodegradation by using Advanced Oxidation Processes, allowed by the presence of TiO2, was preliminary investigated, opening a novel horizon in the use of chitosan-based materials for environmental applications.
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona, 4-70126 Bari, Italy
| | - Vito Rizzi
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona, 4-70126 Bari, Italy
| | - Paola Fini
- National Research Council, Institute for Chemical and Physical Processes, CNR-IPCF, Via Orabona, 4-70126 Bari, Italy
| | - Sergio Nuzzo
- National Research Council, Institute for Chemical and Physical Processes, CNR-IPCF, Via Orabona, 4-70126 Bari, Italy
| | - Pinalysa Cosma
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona, 4-70126 Bari, Italy
- National Research Council, Institute for Chemical and Physical Processes, CNR-IPCF, Via Orabona, 4-70126 Bari, Italy
| |
Collapse
|
3
|
Abu-Dief AM, Abdel-Rahman LH, Sayed MAA, Zikry MM, Khalifa ME, El-Metwaly NM. Optimization strategy for green synthesis of silver nanoparticles (AgNPs) as catalyst for the reduction of 2,4-dinitrophenol via supported mechanism. APPLIED PHYSICS A 2022; 128:595. [DOI: 10.1007/s00339-022-05704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/17/2022] [Indexed: 09/02/2023]
|
4
|
Green Biogenic Synthesis of Silver Nanoparticles Using Aqueous Extract of Moringa Oleifera: Access to a Powerful Antimicrobial, Anticancer, Pesticidal and Catalytic Agents. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02186-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Hierarchical Graphitic Carbon-Encapsulating Cobalt Nanoparticles for Catalytic Hydrogenation of 2,4-Dinitrophenol. Catalysts 2021. [DOI: 10.3390/catal12010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cobalt hierarchical graphitic carbon nanoparticles (Co@HGC) (1), (2), and (3) were prepared by simple pyrolysis of a cobalt phenanthroline complex in the presence of anthracene at different temperatures and heating times, under a nitrogen atmosphere. The samples were used for the catalytic hydrogenation of 2,4-dinitrophenol. Samples (1) and (3) were prepared by heating at 600 °C and 800 °C respectively, while (2) was prepared by heating at 600 °C with an additional intermediate stage at 300 °C. This work revealed that graphitization was catalyzed by cobalt nanoparticles and occurred readily at temperatures of 600 °C and above. The nanocatalysts were characterized by Scanning Electron Microscopy SEM, energy dispersive X-ray analysis EDX, Raman, Xrd, and XPS. The analysis revealed the presence of cobalt and cobalt oxide species as well as graphitized carbon, while TEM analysis indicated that the nanocatalyst contains mainly cobalt nanoparticles of 3–20 nm in size embedded in a lighter graphitic web. Some bamboo-like multiwall carbon nanotubes and graphitic onion-like nanostructures were observed in (3). The structures and chemical properties of the three catalysts were correlated with their catalytic activities. The apparent rate constants kapp (min−1) of the 2,4-dinitrophenol reductions were 0.34 for (2), 0.17 for (3), 0.04 for (1), 0.005 (no catalyst). Among the three studied catalysts, the highest rate constant was obtained for (2), while the highest conversion yield was achieved by (3). Our data show that an increase in agglomeration of the cobalt species reduces the catalytic activity, while an increase in pyrolysis temperature improves the conversion yield. The nanocatalyst enhances hydrogen generation in the presence of sodium borohydride and reduces 2,4-dinitrophenol to p-diamino phenol. The best nanocatalyst (3) was prepared at 800 °C. It consisted of uniformly distributed cobalt nanoparticles sheltered by hierarchical graphitic carbon. The nanocatalyst is easily separated and recycled from the reaction system and proved to be degradation resistant, to have robust stability, and high activity towards the reduction reaction of nitrophenols.
Collapse
|
6
|
Sanyal M, Sharma U. PAMAM (poly-amido amine) dendrimer supported copper nanoparticles for chemoselective nitro reduction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Olagunju MO, Liu Y, Frenkel AI, Knecht MR. Atomically Resolved Characterization of Optically Driven Ligand Reconfiguration on Nanoparticle Catalyst Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44302-44311. [PMID: 34499467 DOI: 10.1021/acsami.1c11256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic ligand layers on nanoparticle surfaces could prove to be critically important to enhance the functionality of individual materials. Such capabilities could complement the properties of the inorganic component to provide multifunctionality or the ability to be remotely actuated. Peptide-based ligands have demonstrated the ability to be remotely responsive to structural changes when adsorbed to nanoparticle surfaces via incorporation of photoswitches into their molecular structure. In this contribution, direct spectroscopic evidence of the remote actuation of a photoswitchable peptide adsorbed onto Au nanoparticles is demonstrated using X-ray absorption fine structure spectroscopic methods. From this analysis, Au-X (X = C or N) coordination numbers confirm the changes before and after photoswitching in the surface ligand conformation, which was correlated directly to variations in the catalytic application of the materials for nitrophenol reduction processes. In addition, the catalytic application of the materials was demonstrated to be significantly sensitive to the structure of the nitrophenol substrate used in the reaction, suggesting that changes in the reactivity are likely based upon the peptide conformation and substrate structure. Such results confirm that surface ligands can be remotely reconfigured on nanoparticle surfaces, providing pathways to apply such capabilities to a variety of applications beyond catalysis ranging from drug delivery to sensing.
Collapse
Affiliation(s)
- Mary O Olagunju
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Yang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Marc R Knecht
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, UM Life Science Technology Building, 1951 NW 7th Avenue, Suite 475, Miami, Florida 33136, United States
| |
Collapse
|
8
|
Farshchi F, Saadati A, Hasanzadeh M, Seidi F. Architecture of a multi-channel and easy-to-make microfluidic paper-based colorimetric device (μPCD) towards selective and sensitive recognition of uric acid by AuNPs: an innovative portable tool for the rapid and low-cost identification of clinically relevant biomolecules. RSC Adv 2021; 11:27298-27308. [PMID: 35480692 PMCID: PMC9037795 DOI: 10.1039/d1ra04764g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Uric acid (UA) is the end product of purine metabolism. Uric acid is usually excreted in the urine, but its abnormal increase and toxic amount can lead to diseases such as gout, hyperuricemia, Lesch-Nyhan syndrome, and cardiovascular disease. On the other hand, UA reduction can lead to neurodegenerative diseases such as sarcoma, glioblastoma, Hodgkin, and etc. Therefore, rapid identification of UA is of great importance. In this work, a simple, portable, inexpensive, and fast microfluidic paper-based colorimetric sensor based on the color change in the presence of UA by using AuNPs was developed. The results can be easily identified with naked eye and further confirmed by UV-vis spectrophotometry. In this method, iron pattern and fiberglass paper were used to construct diagnostic areas and hydrophilic microfluidic channels. We greatly reduced the preparation time of this pattern using a magnet (about three minutes). In this work, four types of nanoparticles with different lower limit of quantification (LLOQ) were used. Linear range of 10-6 to 10-3 M and LLOQ of 10-6 M were obtained for the determination of uric acid using AuNPs-CysA as optical probe. Also, by AuNPs as optical probe a linear range of 10-4 to 10-2 M and the obtained LLOQ was 10-4 M. Finally, by AuNFs as optical probe linear range from 10-6 to 10-2 M and 5 × 10-5 to 10-2 M along with LLOQ of 10-6 and 5 × 10-5 M, respectively. The designed system successfully studied in human urine samples.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Arezoo Saadati
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
9
|
Ramu AG, Salla S, Chandrasekaran S, Silambarasan P, Gopi S, Seo SY, Yun K, Choi D. A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116063. [PMID: 33213948 DOI: 10.1016/j.envpol.2020.116063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Nitrocompounds are the major prime water contaminants. In this investigative study, toxic nitrocompounds (4-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) were removed by using magnetic CuFe2O4, CoFe2O4, and NiFe2O4 material systems. The metal ferrites were synthesized through hydrothermal method and also followed with calcination process. The properties of metal ferrites were confirmed through using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM) studies and results there on were presented. For the first time, the synthesized CuFe2O4, CoFe2O4, and NiFe2O4 material systems were used for the reduction of 4-nitrophenol (NP), 2,4-dinitrophenol (DNP), and 2,4,6-trinitrophenol (TNP) in aqueous medium. The UV-visible spectrometry was employed to monitor the removal of nitro compounds and formation of aminophenol. Among, the three catalysts, the CuFe2O4 displayed excellent removal activity for nitrocompounds. The CuFe2O4 nanoparticles completely removed the NP, DNP and TNP within 2, 5, 10 min, respectively. The NP reduction reaction follows the pseudo-first-order kinetics. Further, the investigated and proposed CuFe2O4, catalyst has given and demonstrated excellent kinetic rate constants 0.990, 0.317, 0.184 min-1 for 4-NP, DNP and TNP respectively, which was very fast kinetic than the already published reports. Also, the aminophenol formation was confirmed for the above mentioned and select nitrocompounds. The obtained results confirm suggest that CuFe2O4 nanoparticles based material system could be one of the promising catalysts for nitro compounds removal process.
Collapse
Affiliation(s)
- A G Ramu
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- ro, Jochiwon- eup, Sejong-city, 30016, Republic of Korea
| | - Sunitha Salla
- Department of Chemistry, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, 600119, India
| | - Sivaraman Chandrasekaran
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - P Silambarasan
- Department of Chemical Engineering, Sunchon University, Jolanamdo, 540-950, Republic of Korea
| | - S Gopi
- Department of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Seung-Yoon Seo
- Department of Bio. & Chemical Engineering, Hongik University, 2639-Sejong- ro, Jochiwon-eup, Sejong-city, 30016, Republic of Korea
| | - Kyusik Yun
- Department of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- ro, Jochiwon- eup, Sejong-city, 30016, Republic of Korea.
| |
Collapse
|
10
|
High throughput green reduction of tris(p-nitrophenyl)amine at ambient temperature over homogenous AgNPs as H-transfer catalyst. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01819-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Qin L, Yi H, Zeng G, Lai C, Huang D, Xu P, Fu Y, He J, Li B, Zhang C, Cheng M, Wang H, Liu X. Hierarchical porous carbon material restricted Au catalyst for highly catalytic reduction of nitroaromatics. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120864. [PMID: 31326837 DOI: 10.1016/j.jhazmat.2019.120864] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 05/25/2023]
Abstract
In this study, four kinds of porous carbon materials were used as supports to anchor gold nanoparticles (AuNPs) for catalytic reduction of nitroaromatics and 4-nitrophenol (4-NP) was employed as a model material. Results identified that carbon black (CB) restricted-Au catalyst (Au/CB) provided large specific surface area, small AuNPs size, and low cost, which showed highly catalytic activity for 4-NP reduction. Besides, with the increase of Au loadings, the catalytic activity of Au/CB was enhanced and the 1.2 wt% of Au loading exhibited the best catalytic activity with the high rate of 0.8302 min-1 and the turnover frequency of 492.50 h-1. Universality and real water application demonstrated that the as-prepared Au/CB catalyst was promising candidate for other phenols and azo dyes reduction and had great potential for practical application. Furthermore, after ten cycles, Au/CB still retained satisfying stability and activity. These results suggested that the larger specific surface area and smaller particle size attributing to the porosity of CB were conducive to improving the catalytic activity of Au catalysts. This design shows high potential of hierarchical porous carbon materials for highly catalytic reaction in many fields, especially the water purification.
Collapse
Affiliation(s)
- Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Jiangfan He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| |
Collapse
|
12
|
Li X, Feng Q, Li D, Christopher N, Ke H, Wei Q. Reusable Surface-Modified Bacterial Cellulose Based on Atom Transfer Radical Polymerization Technology with Excellent Catalytic Properties. NANOMATERIALS 2019; 9:nano9101443. [PMID: 31614531 PMCID: PMC6835580 DOI: 10.3390/nano9101443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022]
Abstract
The high catalytic activity of membrane-binding gold nanoparticles (AuNPs) makes its application in oxidation or reduction an attractive challenge. Herein, surface-functionalized bacterial cellulose (BC-poly(HEMA)) was successfully prepared with 2-hydroxyethyl methacrylate (HEMA) as monomers via the atom transfer radical polymerization (ATRP) method. BC-poly(HEMA) was further utilized as not only reducing agent but also carrier for uniform distribution of the AuNPs in the diameter of about 8 nm on the membrane surface during the synthesis stage. The synthesized AuNPs/BC-poly(HEMA) exhibited excellent catalytic activity and reusability for reducing 4-nitrophenol (4-NP) from NaBH4. The results proved that the catalytic performance of AuNPs/BC-poly(HEMA) was affected by the surrounding temperature and pH, and AuNPs/BC-poly(HEMA) maintained the extremely high catalytic activity of AuNPs/BC-poly(HEMA) even after 10 reuses. In addition, no 4-NP was detected in the degradation solution after being stored for 45 days. The reusable catalyst prepared by this work shows a potential industrial application prospect.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Quan Feng
- Key Laboratory of Textile Fabric, Anhui Polytechnic University, Wuhu 241000, China.
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Narh Christopher
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fiber and Materials, Minjiang University, Fuzhou 350108, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Fujian Key Laboratory of Novel Functional Textile Fiber and Materials, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
13
|
Sanyal M, Sharma U. Selective reduction of nitro group using CuNi bimetallic nanoparticles. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0318-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|