1
|
Yang Y, Li Y, Wang Y, Chen X, Yao Y, Li D, Yu G, Song X. The role and regulatory mechanism of lysosome associated protein transmembrane 4β in tumors. Front Oncol 2025; 15:1552007. [PMID: 40231269 PMCID: PMC11995161 DOI: 10.3389/fonc.2025.1552007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
The oncogene LAPTM4B (encoding lysosome-associated protein transmembrane-4β), first cloned in hepatocellular carcinoma cells, is located on chromosome 8q22.1 and encodes two isoforms, LAPTM4B-35 and LAPTM4B-24. LAPTM4B proteins have four transmembrane structural domains and are mainly distributed in lysosomal and endosomal membranes of cells. Studies have shown that LAPTM4B is overexpressed in a variety of cancers, in which the genetic polymorphism of LAPTM4B is associated with tumor susceptibility. LAPTM4B also regulates various cell signaling pathways, interacts with autophagy-related proteins and ceramides, and regulates the autophagy process and the release of exosomes, which in turn affect the survival and drug resistance of tumor cells. In conclusion, this paper summarizes recent research on LAPTM4B, aiming to explore the role and potential mechanisms of LAPTM4B in a variety of tumors.
Collapse
Affiliation(s)
- Yuteng Yang
- The 2nd Medical College of Binzhou Medical University, Yantai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yisong Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Dongxian Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Guohua Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
2
|
Zhou H, Yi Y, He W, Zheng L, Hu Y, Niu T. A comprehensive prognostic and immune analysis of LAPTM4B in pan-cancer and Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Immunol 2025; 16:1522293. [PMID: 40092987 PMCID: PMC11906416 DOI: 10.3389/fimmu.2025.1522293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Lysosomal-associated protein transmembrane-4 beta (LAPTM4B) protein expression was increased in solid tumors, whereas few studies were performed in hematologic malignancies. We aimed to study the effect of the LAPTM4B gene in pan-cancer and Philadelphia chromosome-positive acute B cell lymphoblastic leukemia (Ph+ B-ALL). Methods The differential expression, diagnosis, prognosis, genetic and epigenetic alterations, tumor microenvironment, stemness, immune infiltration cells, function enrichment, single-cell analysis, and drug response across cancers were conducted based on multiple computational tools. Additionally, Ph+ B-ALL transgenic mouse model with Laptm4b knockout was used to analyze the function of LAPTM4B in vivo. BrdU incorporation method, flow cytometry, and Witte-lock Witte culture were used to evaluate the roles of LAPTM4B in vitro. Results We identified that LAPTM4B expression was increased in various cancers, with significant associations with clinical outcomes. LAPTM4B expression correlated with DNA and RNA methylation patterns and was associated with drug resistance. It also influenced the tumor immune microenvironment, with implications for immunotherapy response. In leukemia, LAPTM4B was expressed in stem cells and associated with specific subtypes. Knockout of LAPTM4B impeded B-ALL progression in mice and reduced cell proliferation and caused G0/G1 arrest in vitro. Discussion Our study elucidated the role LAPTM4B that promoted the development and progression in Ph+ B-ALL. Furthermore, LAPTM4B played a diagnostic, prognostic, and immunological factor.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuyao Yi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinic Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei He
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Li Zheng
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yiguo Hu
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Reddy RA, Varshini MS, Kumar RS. Matrix Metalloproteinase-2 (MMP-2): As an Essential Factor in Cancer Progression. Recent Pat Anticancer Drug Discov 2025; 20:26-44. [PMID: 37861020 PMCID: PMC11826896 DOI: 10.2174/0115748928251754230922095544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The development of cancer has been a multistep process involving mutation, proliferation, survival, invasion, and metastasis. Of all the characteristics of cancer, metastasis is believed to be the hallmark as it is responsible for the highest number of cancer-related deaths. In connection with this, Matrix metalloproteinases (MMPs), that has a role in metastasis, are one of the novel therapeutic targets. MMPs belong to the family of zinc-dependent endopeptidases and are capable of degrading the components of the extracellular matrix (ECM). The role of MMPs in ECM remodeling includes tissue morphogenesis, uterine cycling, growth, tissue repair, and angiogenesis. During pathological conditions, MMPs play a critical role in the excessive degradation of ECM which includes arthritis, tumour invasion, tumour metastasis, and several other autoimmune disorders. Moreover, they are believed to be involved in many physiological aspects of the cell, such as proliferation, migration, differentiation, angiogenesis, and apoptosis. It is reported that dysregulation of MMP in a variety of cancer subtypes have a dual role in tumour growth and metastasis processes. Further, multiple studies suggest the therapeutic potential of targeting MMP in invading cancer. The expression of MMP-2 correlates with the clinical characteristics of cancer patients, and its expression profile is a new diagnostic and prognostic biomarker for a variety of human diseases. Hence, manipulating the expression or function of MMP-2 may be a potential treatment strategy for different diseases, including cancers. Hence, the present review discusses the therapeutic potential of targeting MMP in various types of cancers and their recent patents.
Collapse
|