1
|
Ren B, Liang J, Yang L, Wei X, Guo M, Li H. Bioinformatics-driven exploration of key genes and mechanisms underlying oxidative stress in traumatic brain injury. Front Aging Neurosci 2025; 17:1531317. [PMID: 40353060 PMCID: PMC12062069 DOI: 10.3389/fnagi.2025.1531317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Background Oxidative stress is a pivotal mechanism implicated in the onset of traumatic brain injury (TBI), yet its precise role remains elusive. This study aims to elucidate the potential molecular interactions between key genes associated with oxidative stress and their influence on TBI pathogenesis. Methods TBI dataset and oxidative stress-related genes sourced from Public databases. Differential expression analysis and machine learning models were executed to select key genes, which were further validated using receiver operating characteristic (ROC) curves. A nomogram was constructed for diagnostic prediction, and enrichment analysis explored pathways associated with key genes. Immune infiltration analysis and regulatory network construction were conducted. Molecular validation included RT-qPCR and Western blotting using rat brain tissue to assess gene and protein expression levels. Results In our study, we identified 400 differentially expressed genes (DEGs) between TBI and normal samples, including 20 oxidative stress-related genes. Machine learning analysis highlighted AKR1C2, QDPR, CYP3A5, CNTF, and PNPT1 as key genes with diagnostic potential (AUC > 0.6). Functional analysis revealed significant involvement of these genes in immune processes and metabolic regulation. Further, immune cell infiltration analysis showed notable differences in effector memory CD8 T cells. Molecular validation through RT-qPCR and Western blot confirmed the overexpression of key genes PNPT1 and QDPR in TBI models, substantiating their potential role in TBI pathology. Conclusion Our study revealed the potential mechanisms of action for PNPT1 and QDPR in TBI, offering valuable insights into their roles in TBI pathology. These findings opened new avenues for future therapeutic strategies in TBI treatment.
Collapse
Affiliation(s)
- Bin Ren
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Jifang Liang
- Department of Intensive Care Unit, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Leifang Yang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaocong Wei
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Min Guo
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Hong Li
- Department of Gynaecology and Obstetrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Tang B, Wang K, Ren Q, Zhou J, Xu Y, Liu L, Yin B, Zhang Y, Huang Q, Lv R, Luo Z, Zhao H, Shen L. GALNT14-mediated O-glycosylation drives lung adenocarcinoma progression by reducing endogenous reactive oxygen species generation. Cell Signal 2024; 124:111477. [PMID: 39426495 DOI: 10.1016/j.cellsig.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Aberrant glycosylation, resulting from dysregulated expression of glycosyltransferases, is a prevalent feature of cancer cells. N-acetylgalactosaminyltransferase-14 (GALNT14) serves as a pivotal enzyme responsible for initiating O-GalNAcylation. It remains unclear whether and how GALNT14 affects lung adenocarcinoma (LUAD). Here, GALNT14 expression in LUAD was analyzed by searching public databases and verified by examining clinical samples. Bioinformatics, LC-MS/MS, RNA-seq, and RIP-seq analyses were used to uncover the mechanism underlying GALNT14. We observed that GALNT14 was frequently overexpressed in LUAD tissues. High GALNT14 expression was positively associated with advanced TNM stage, larger tumor size, and unfavorable prognosis. Functionally, GALNT14 facilitated LUAD cell proliferation, migration, and invasion in vitro and accelerated tumor growth in vivo. Mechanistically, GALNT14 reduced the accumulation of endogenous reactive oxygen species (ROS) to exert its oncogenic function via O-glycosylating hnRNPUL1 to upregulate AKR1C2 expression. Meanwhile, GALNT14 expression was directly modulated by miR-125a.These findings indicated that GALNT14-mediated O-GalNAcylation could drive LUAD progression via eliminating ROS and might be a valuable therapeutic target.
Collapse
Affiliation(s)
- Bingbing Tang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Kelong Wang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China
| | - Qiulei Ren
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Junshuo Zhou
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuewen Xu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Liaoyuan Liu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Bin Yin
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yaling Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Qian Huang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ruiqi Lv
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| | - Hongyan Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| |
Collapse
|
3
|
Zhu Z, Zhang Y, Zhang X, Chen Q, Tang S, Zhou X, Li X, Wen J, Bai Y, Zhang T. Potential molecular metabolic mechanisms underlying the effects of cimifugin in gastric cancer through single-cell and bulk RNA sequencing combined with network pharmacology. J Gastrointest Oncol 2024; 15:1409-1430. [PMID: 39279957 PMCID: PMC11399845 DOI: 10.21037/jgo-24-413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Gastric cancer (GC) is a leading cause of cancer-related mortality worldwide, posing a significant clinical challenge due to its complex tumor microenvironment (TME) and metabolic heterogeneity. Despite continuous improvements in treatment strategies including surgery, chemotherapy, and targeted therapies, the metabolic reprogramming in GC continues to impede treatment efficacy, highlighting an urgent need for the development of novel therapeutic strategies. This persistent issue underscores the urgent need for novel therapeutic approaches that can effectively address the diverse and dynamic characteristics of GC. Cimifugin, a traditional Chinese medicine (TCM), has garnered attention for its potential role in alleviating inflammation, neurological disorders, pain, and metabolic disorders. Its multi-targeting properties and minimal side effects suggest a broad potential for cancer management, which is currently being explored. This study aims to delineate the molecular mechanisms that cimifugin may impact within the TME and metabolic pathways of GC, with the expectation of contributing to a deeper understanding of GC and the development of innovative treatment strategies. Methods We identified the GC-related TME cell types and metabolic profiles and pathways by using relevant data from the single-cell RNA sequencing (scRNA-seq) database GSE134520 and the stomach adenocarcinoma (STAD) data set from The Cancer Genome Atlas (TCGA). We also assessed the effects of cimifugin on MKN28 cell proliferation, invasion, and migration. By using six public platforms, we comprehensively predicted the potential biological targets of cimifugin. Clinical prognosis and immunohistochemistry (IHC), molecular docking, and dynamics simulations were used to confirm the clinical relevance and stability of the aforementioned targets. Results Cimifugin inhibited MKN28 cell proliferation, migration, and invasion. Cimifugin may potentially act on various metabolic pathways in GC, including folate biosynthesis, xenobiotic metabolism via cytochrome P450 (CYP), glutathione metabolism, steroid hormone biosynthesis, and tryptophan metabolism. Cimifugin was noted to stably bind to three significant core targets associated with metabolic reprogramming in GC: AKR1C2, MAOB, and PDE2A; all three targets were strongly expressed in endocrince cells, pit mucous cells (PMCs), and common myeloid progenitors (CMPs). Conclusions We verified the pharmacological effects of cimifugin on GC cell proliferation, invasion, and migration. AKR1C2, MAOB, and PDE2A were identified as the key targets of cimifugin in GC-related metabolic reprogramming and pathogenesis. Our research provides preliminary insights into the potential therapeutic effects of cimifugin, which could be considered for future exploration in the context of GC treatment.
Collapse
Affiliation(s)
- Ziming Zhu
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yinbiao Zhang
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyue Zhang
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Qiaoling Chen
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Shanneng Tang
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xuan Zhou
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao Li
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jieying Wen
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Bai
- College of Traditional Chinese Medicine, Guangxi Medical College, Nanning, China
| | - Tao Zhang
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Xu K, Wang X, Hu S, Tang J, Liu S, Chen H, Zhang X, Dai P. LINC00540 promotes sorafenib resistance and functions as a ceRNA for miR-4677-3p to regulate AKR1C2 in hepatocellular carcinoma. Heliyon 2024; 10:e27322. [PMID: 38463802 PMCID: PMC10920722 DOI: 10.1016/j.heliyon.2024.e27322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Sorafenib resistance is one of the main causes of poor prognosis in patients with advanced hepatocellular carcinoma (HCC). Long noncoding RNAs (lncRNAs) function as suppressors or oncogenic factors during tumor progression and drug resistance. Here, to identify therapeutic targets for HCC, the biological mechanisms of abnormally expressed lncRNAs were examined in sorafenib-resistant HCC cells. Specifically, we established sorafenib-resistant HCC cell lines (Huh7-S and SMMC7721-S), which displayed an epithelial-mesenchymal transition (EMT) phenotype. Transcriptome sequencing (RNA-Seq) was performed to established differential lncRNA expression profiles for sorafenib-resistant cells. Through this analysis, we identified LINC00540 as significantly up-regulated in sorafenib-resistant cells and a candidate lncRNA for further mechanistic investigation. Functionally, LINC00540 knockdown promoted sorafenib sensitivity and suppressed migration, invasion, EMT and the activation of PI3K/AKT signaling pathway in sorafenib-resistant HCC cells, whereas overexpression of LINC00540 resulted in the opposite effects in parental cells. LINC00540 functions as a competing endogenous RNA (ceRNA) by competitively binding to miR-4677-3p , thereby promoting AKR1C2 expression. This is the first study that demonstrates a role for LINC00540 in enhancing sorafenib resistance, migration and invasion of HCC cells through the LINC00540/miR-4677-3p/AKR1C2 axis, suggesting that LINC00540 may represent a potential therapeutic target and prognosis biomarker for HCC.
Collapse
Affiliation(s)
- Kaixuan Xu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinxin Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuwei Hu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiaxuan Tang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shihui Liu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hui Chen
- The University Hospital of Northwest University, Xi'an, 710069, China
| | - Xiaobin Zhang
- The University Hospital of Northwest University, Xi'an, 710069, China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Shaanxi Lifegen Co., Ltd, Xi'an, 712000, China
| |
Collapse
|