1
|
Pandey SN, Babu MA, Ali H, H M, Maharana L, Goyal K, Rana M, Imran M. MUC1 as a diagnostic biomarker and siRNA-based therapeutic target in breast cancer: A clinical chemistry perspective. Clin Chim Acta 2025; 576:120387. [PMID: 40425136 DOI: 10.1016/j.cca.2025.120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/24/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
Breast cancer remains the leading cause of cancer mortality in women, and early detection coupled with real-time monitoring of tumor burden are clinical imperatives; yet existing imaging-based screening (e.g., mammography, ultrasound) suffers from sensitivities as low as 60-80% and even lower in dense breasts plus substantial false-positive rates, underscoring the critical need for molecular assays with higher accuracy. Current clinical assays for circulating MUC1 (CA15-3) achieve high specificity but exhibit limited sensitivity in early-stage disease, underscoring a critical unmet need for more sensitive, multiplexed biomarkers to enable timely intervention. Mass spectrometry-based glycoproteomic workflows offer multiplexed quantification of tumour-associated MUC1 glycoforms, substantially improving analytical specificity and dynamic range. Complementary liquid-biopsy platforms that detect anti-MUC1 autoantibodies further extend lead time for recurrence detection. Concurrently, small interfering RNA (siRNA) therapies targeting MUC1 delivered via ionizable lipid nanoparticles demonstrate efficient tumor accumulation, robust mRNA knockdown, and favourable safety in phaseI solid tumor trials. In this review, we critically assess the analytical performance and standardization challenges of current MUC1 assays, evaluate emerging mass spectrometry and immunoarray techniques, and examine chemical and nanocarrier strategies that surmount biological barriers to siRNA delivery. We propose a co-development framework for harmonized companion diagnostics and MUC1-directed RNAi therapeutics under unified regulatory pathways, paving the way for precision, biomarker-driven interventions in breast cancer care.
Collapse
Affiliation(s)
- Surya Nath Pandey
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 Uttar Pradesh, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Laxmidhar Maharana
- Department of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohd Imran
- Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia.
| |
Collapse
|
2
|
El-Far M, Abdelrazek MA, Foda BM, Abouzid A, Swellam M. Potential Role of AKR1B1 Gene Methylation in Diagnosis of Patients With Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549241290796. [PMID: 39445312 PMCID: PMC11497498 DOI: 10.1177/11795549241290796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
Background In addition to the great challenge of early diagnosis and prognosis in breast cancer (BC), the role of gene promoters in BC remains largely unexplored. This study aimed to evaluate aldo-keto reductase family 1 member B1 (AKR1B1) methylation as noninvasive biomarker for early BC diagnosis. Methods A total of 200 (120 with BC, 40 with benign breast diseases, 40 healthy) Egyptian women were enrolled. AKR1B1 methylation level was determined using EpiTect Methyl II QPCR assay quantitative polymerase chain reaction. Results Findings revealed that hypermethylation AKR1B1 was reported to be associated (P < .0001) with BC cases (93.2 [75.4-98.6]) compared with benign (23.9 [22.6-48.3]) or healthy (15.5 [10.6-16]) controls. It had a great diagnostic power (area under the curve [AUC] = 0.909) that was superior to cancer antigen (CA) 15-3 (AUC = 0.681) and carcinoembryonic antigen (CEA) (AUC = 0.539). Interestingly, AKR1B1 hypermethylation was reported to be significant in identifying BC early stages (AUC = 0.899) and grades (AUC = 0.903). Independent to hormonal status and HER2neu expression, AKR1B1 hypermethylation was related to some tumor severity features, including advanced stages, high histological grades, and lymph node invasion. Also, AKR1B1 high degrees of methylation were significantly correlated with the increase in CEA (r = .195; P = .027), CA-15.3 (r = .351; P = .0001) and tumor stages (r = .274; P = .014), grades (r = .253; P = .024), and lymph node invasion (r = .275; P = .014). Conclusions This study revealed that aberrant AKR1B1 methylation could facilitate early BC detection from benign br0east disorders. Hypermethylated AKR1B1 was related to BC aggressiveness suggesting its potential role as diagnostic and prognostic BC biomarker.
Collapse
Affiliation(s)
- Mohamed El-Far
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed A Abdelrazek
- Research and Development Department, Biotechnology Research Center, New Damietta, Egypt
| | - Basma M Foda
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amr Abouzid
- Department of Surgical Oncology, Mansoura Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Menha Swellam
- Biochemistry Department, Biotechnology Research Institute, High Throughput Molecular and Genetic Laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Pourmadadi M, Ghaemi A, Khanizadeh A, Yazdian F, Mollajavadi Y, Arshad R, Rahdar A. Breast cancer detection based on cancer antigen 15-3; emphasis on optical and electrochemical methods: A review. Biosens Bioelectron 2024; 260:116425. [PMID: 38824703 DOI: 10.1016/j.bios.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Cancer antigen 15-3 (CA 15-3) is a crucial marker used in the diagnosis and monitoring of breast cancer (BC). The demand for early and precise cancer detection has grown, making the creation of biosensors that are highly sensitive and specific essential. This review paper provides a thorough examination of the progress made in optical and electrochemical biosensors for detecting the cancer biomarker CA 15-3. We focus on explaining their fundamental principles, sensitivity, specificity, and potential for point-of-care applications. The performance attributes of these biosensors are assessed by considering their limits of detection, reaction times, and operational stability, while also making comparisons to conventional methods of CA 15-3 detection. In addition, we explore the incorporation of nanomaterials and innovative transducer components to improve the performance of biosensors. This paper conducts a thorough examination of recent studies to identify the existing obstacles. It also suggests potential areas for future research in this fast progressing field.The paper provides insights into their advancement and utilization to enhance patient outcomes. Both categories of biosensors provide significant promise for the detection of CA 15-3 and offer distinct advantages compared to conventional analytical approaches.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Amirhossein Ghaemi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirhossein Khanizadeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Yasin Mollajavadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan; Adjunct Professor at Equator University of Science and Technology, Uganda
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran; Key Laboratory of Modeling and Simulation-based Reliability and Optimization, University of Zabol, Zabol, Iran.
| |
Collapse
|
4
|
Kabir RJ, Mahmud R, Kabir ME, Ayub Ansary AMA, Sultana S, Rahman M, Adhikary D, Moureen A, Ranjan R, Yusuf MA. Diagnostic Accuracy of Cancer Antigen 15-3 as a Seromarker Among Recurrent Breast Carcinoma in Bangladesh. Cureus 2024; 16:e68448. [PMID: 39360039 PMCID: PMC11446177 DOI: 10.7759/cureus.68448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The diagnosis of recurrent breast carcinoma is crucial for patient treatment. The present study aimed to assess the diagnostic accuracy of cancer antigen 15-3 (CA 15-3) as a sero-marker among recurrent breast carcinoma patients. METHODS This prospective observational study evaluated the serum CA 15-3 among women (age ≥18 years) with recurrent breast carcinoma. The CA 15-3 was measured by the enzyme-linked immunosorbent assay (ELISA), and concentrations were stratified using a cut-off value of 30 U/mL. The receiver operating characteristic (ROC) curve observed that the sensitivity and specificity of the CA 15-3 cut-off value and the area under the AUROC curve demonstrate the goodness-of-fit of the prediction model. RESULTS A total of 50 patients were recruited, with a mean age of 48.4 ±9.7years. The majority (n=28, 56.0%) of patients were 41 to 50 years old. Further, a total of 42 (84%) patients had high serum levels of CA 15-3, with a mean value of 72.7±9.5 U/mL. At the cut-off level of 30 U/mL, the ROC curve demonstrated sensitivity, specificity, positive predictive value, and negative predictive value of 95.7%, 69.4%, 84.1%, and 72.8%, respectively, to diagnose recurrent breast carcinoma. Nonetheless, the area under the ROC (AUROC) curve was 0.712, indicating a satisfactory fit for the prediction model. CONCLUSION We found that CA 15-3 level ≥30 U/mL is highly sensitive and specific as a seromarker for detecting recurrent breast cancer among the Bangladeshi population. We recommend routinely monitoring breast cancer survivors using CA 15-3 biomarkers.
Collapse
Affiliation(s)
- Rawnok Jahan Kabir
- Surgery, Siraj-Khaleda Memorial Cantonment Board General Hospital, Dhaka, BGD
| | - Refoyez Mahmud
- Pediatric Surgery, Bangladesh Shishu Hospital and Institute, Dhaka, BGD
| | | | | | - Salma Sultana
- Surgery, Dhaka Medical College and Hospital, Dhaka, BGD
| | - Mayisha Rahman
- Biochemistry and Molecular Biology, Georgetown University, Dhaka, BGD
| | - Dipannita Adhikary
- Biological Sciences, Royal Holloway University College London, London, GBR
| | - Adneen Moureen
- Tuberculosis (TB) New Technologies and Diagnostics (Bangladesh), United States Agency for International Development (USAID), Dhaka, BGD
| | - Redoy Ranjan
- Cardiac Surgery, St. Georges University Hospital NHS Foundation Trust, London, GBR
- Cardiac Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, BGD
- Biological Science, Royal Holloway University of London, London, GBR
| | - Md Abdullah Yusuf
- Microbiology, National Institute of Neurosciences and Hospital, Dhaka, BGD
| |
Collapse
|
5
|
Shen Y, Sun Z, Zhao S, Chen F, Shi P, Zhao N, Sun K, Ye C, Lin C, Fu L. Screen-Printed Electrodes as Low-Cost Sensors for Breast Cancer Biomarker Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5679. [PMID: 39275589 PMCID: PMC11398123 DOI: 10.3390/s24175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
This review explores the emerging role of screen-printed electrodes (SPEs) in the detection of breast cancer biomarkers. We discuss the fundamental principles and fabrication techniques of SPEs, highlighting their adaptability and cost-effectiveness. The review examines various modification strategies, including nanomaterial incorporation, polymer coatings, and biomolecule immobilization, which enhance sensor performance. We analyze the application of SPEs in detecting protein, genetic, and metabolite biomarkers associated with breast cancer, presenting recent advancements and innovative approaches. The integration of SPEs with microfluidic systems and their potential in wearable devices for continuous monitoring are explored. While emphasizing the promising aspects of SPE-based biosensors, we also address current challenges in sensitivity, specificity, and real-world applicability. The review concludes by discussing future perspectives, including the potential for early screening and therapy monitoring, and the steps required for clinical implementation. This comprehensive overview aims to stimulate further research and development in SPE-based biosensors for improved breast cancer management.
Collapse
Grants
- 52272053, 52075527, 52102055 National Natural Science Foundation of China
- 2022YFA1203100, 2022YFB3706602, 2021YFB3701801 National Key R&D Program of China
- 2021Z120, 2021Z115, 2022Z084, 2022Z191 Ningbo Key Scientific and Technological Project
- 2021A-037-C, 2021A-108-G the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- 2020M681965, 2022M713243 China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- 2021ZDYF020196, 2021ZDYF020198 Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001 the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Yin Shen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Shichao Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Kaiqiang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Chengte Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
6
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Vellan CJ, Islam T, De Silva S, Mohd Taib NA, Prasanna G, Jayapalan JJ. Exploring novel protein-based biomarkers for advancing breast cancer diagnosis: A review. Clin Biochem 2024; 129:110776. [PMID: 38823558 DOI: 10.1016/j.clinbiochem.2024.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review provides a contemporary examination of the evolving landscape of breast cancer (BC) diagnosis, focusing on the pivotal role of novel protein-based biomarkers. The overview begins by elucidating the multifaceted nature of BC, exploring its prevalence, subtypes, and clinical complexities. A critical emphasis is placed on the transformative impact of proteomics, dissecting the proteome to unravel the molecular intricacies of BC. Navigating through various sources of samples crucial for biomarker investigations, the review underscores the significance of robust sample processing methods and their validation in ensuring reliable outcomes. The central theme of the review revolves around the identification and evaluation of novel protein-based biomarkers. Cutting-edge discoveries are summarised, shedding light on emerging biomarkers poised for clinical application. Nevertheless, the review candidly addresses the challenges inherent in biomarker discovery, including issues of standardisation, reproducibility, and the complex heterogeneity of BC. The future direction section envisions innovative strategies and technologies to overcome existing challenges. In conclusion, the review summarises the current state of BC biomarker research, offering insights into the intricacies of proteomic investigations. As precision medicine gains momentum, the integration of novel protein-based biomarkers emerges as a promising avenue for enhancing the accuracy and efficacy of BC diagnosis. This review serves as a compass for researchers and clinicians navigating the evolving landscape of BC biomarker discovery, guiding them toward transformative advancements in diagnostic precision and personalised patient care.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tania Islam
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Galhena Prasanna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Schröder L, Mallmann MR, Domroese CM, Wefers N, Dolscheid-Pommerich R, Stoffel-Wagner B, Trulson I, Vahldiek K, Klawonn F, Holdenrieder S. Method Comparison and Clinical Performance of Breast Cancer Tumor Markers on Novel Multiplex Immunoassay and Automatized LOCI Technology Platforms. Diagnostics (Basel) 2023; 13:3101. [PMID: 37835844 PMCID: PMC10572608 DOI: 10.3390/diagnostics13193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Tumor marker determinations are valuable tools for the guidance of breast cancer patients during the course of disease. They are assessed on diverse analytical platforms that may be associated with differences according to the methods applied and the clinical performance. To investigate the method dependency and clinical significance of breast cancer protein tumor markers, CEA, CA 15-3, CA 125, CA 19-9 and AFP were measured in a total of 154 biobanked samples from 77 patients with breast cancer, 10 with DCIS, 31 with benign breast diseases and 36 healthy controls using a Millipore multiplex biomarker panel (MP) and an automized version of the routinely used Vista LOCI technology. The markers were compared between methods and investigated for diagnostic performance. CEA, CA 15-3 and AFP showed good correlations between both platforms with correlation coefficients of R = 0.85, 0.85 and 0.92, respectively, in all samples, but similarly also in the various subgroups. CA 125 and CA 19-9 showed only moderate correlations (R = 0.71 and 0.56, respectively). Absolute values were significantly higher for CEA, CA 15-3, CA 125 and AFP in the Vista LOCI as compared with the MP method and vice versa for CA 19-9. The diagnostic performance for discrimination of breast cancer from healthy controls was similar for both methods with AUCs in ROC curves for CEA (MP 0.81, 95% CI 0.72-0.91; LOCI 0.81; 95% CI 0.72-0.91) and CA-15-3 (MP 0.75, 95% CI 0.65-0.86; LOCI 0.67, 95% CI 0.54-0.79). Similar results were obtained for the comparison of breast cancer with benign breast diseases regarding CEA (AUC MP 0.62, 95% CI 0.51-0.73; LOCI 0.64, 95% CI 0.53-0.74) and CA-15-3 (MP 0.70, 95% CI 0.6-0.81; LOCI 0.66, 95% CI 0.54-0.77). Both platforms show moderate to good method comparability for tumor markers with similar clinical performance. However, absolute levels in individual patients should be interpreted with care.
Collapse
Affiliation(s)
- Lars Schröder
- Department of Gynecology, Ketteler-Hospital Offenbach, 63071 Offenbach, Germany
- Department of Gynecology, University Hospital Bonn, 53127 Bonn, Germany
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Michael R Mallmann
- Department of Gynecology, University Hospital Bonn, 53127 Bonn, Germany
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christian M Domroese
- Department of Gynecology, University Hospital Bonn, 53127 Bonn, Germany
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Natalie Wefers
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Ramona Dolscheid-Pommerich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Inga Trulson
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany
| | - Kai Vahldiek
- Department of Computer Science, Ostfalia University, 38302 Wolfenbüttel, Germany
| | - Frank Klawonn
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany
- Department of Computer Science, Ostfalia University, 38302 Wolfenbüttel, Germany
- Helmholtz Centre for Infection Research, Biostatistics, 38124 Braunschweig, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany
- Center for the Evaluation of Biomarkers, 81679 Munich, Germany
| |
Collapse
|