1
|
Martinelli S, Nannini G, Cianchi F, Coratti F, Amedei A. The Impact of Microbiota-Immunity-Hormone Interactions on Autoimmune Diseases and Infection. Biomedicines 2024; 12:616. [PMID: 38540229 PMCID: PMC10967803 DOI: 10.3390/biomedicines12030616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 02/07/2025] Open
Abstract
Autoimmune diseases are complex multifactorial disorders, and a mixture of genetic and environmental factors play a role in their onset. In recent years, the microbiota has gained attention as it helps to maintain host health and immune homeostasis and is a relevant player in the interaction between our body and the outside world. Alterations (dysbiosis) in its composition or function have been linked to different pathologies, including autoimmune diseases. Among the different microbiota functions, there is the activation/modulation of immune cells that can protect against infections. However, if dysbiosis occurs, it can compromise the host's ability to protect against pathogens, contributing to the development and progression of autoimmune diseases. In some cases, infections can trigger autoimmune diseases by several mechanisms, including the alteration of gut permeability and the activation of innate immune cells to produce pro-inflammatory cytokines that recruit autoreactive T and B cells. In this complex scenario, we cannot neglect critical hormones' roles in regulating immune responses. Different hormones, especially estrogens, have been shown to influence the development and progression of autoimmune diseases by modulating the activity and function of the immune system in different ways. In this review, we summarized the main mechanisms of connection between infections, microbiota, immunity, and hormones in autoimmune diseases' onset and progression given the influence of some infections and hormone levels on their pathogenesis. In detail, we focused on rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
2
|
The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res 2018; 2018:4126106. [PMID: 29854836 PMCID: PMC5964414 DOI: 10.1155/2018/4126106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.
Collapse
|
3
|
Abstract
In the last 20 years research in Immunology underwent fundamental changes. Most importantly, the identification of the key role of innate immune pattern recognition receptors (PRRs) that recognize evolutionarily conserved molecular patterns on infectious pathogens. This results in priming of innate immune cells, which in turn activate and direct the adaptive immune response. Progress in innate immune recognition instigated the current working hypothesis, that recognition of endogenous ligands by PRRs results in innate immune cell activation (autoinflammation) or activation of adaptive cells, with self-reactive antigen receptors (autoimmunity). In particular, nucleic acid-sensing innate immune receptors seem to be prime candidates for a mechanistic understanding of autoreactive activation of the immune system. However, it remains uncertain what the actual source of nucleic acid ligands is and what other signals are needed to drive activation of autoreactive innate immune cells and break self-tolerance of the adaptive immune system. Here, I will review our present understanding about whether the infection with exogenous retroviruses or the reactivation of endogenous retroviruses might play an etiological role in certain autoimmune conditions of humans and murine experimental models.
Collapse
Affiliation(s)
- Philipp Yu
- Institute of Immunology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Boneparth A, Woods M, Huang W, Akerman M, Lesser M, Davidson A. The Effect of BAFF Inhibition on Autoreactive B-Cell Selection in Murine Systemic Lupus Erythematosus. Mol Med 2016; 22:173-182. [PMID: 26882090 DOI: 10.2119/molmed.2016.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/15/2022] Open
Abstract
The goal of this study was to determine how B-cell-activating factor of the TNF family (BAFF) availability influences selection of the autoreactive B-cell repertoire in NZB/W and NZW/BXSB lupus-prone mice bearing the site-directed heavy-chain transgene 3H9 that encodes for anti-dsDNA and anti-cardiolipin (CL) autoantibodies. We used a bone marrow chimera system in which autoreactive 3H9 transgenic B cells were allowed to mature in competition with wild-type cells and could be identified by green fluorescent protein. The light-chain repertoire associated with the 3H9 heavy chain in naive and antigen-activated B-cell subsets was assessed using single-cell polymerase chain reaction. We found that deletion of autoreactive transgenic B cells occurred in the bone marrow of both strains regardless of BAFF availability, and there were only modest and physiologically non-relevant effects on the naive B-cell repertoire. BAFF inhibition had different effects on selection of the germinal center repertoire in the two strains. In the NZW/BXSB strain, BAFF inhibition phenocopied the loss of one TLR7 allele in that it influenced the selection of 3H9-encoded autoreactive B cells in the germinal center but did not prevent somatic mutation. In the NZB/W strain, BAFF inhibition did not alter the selection of 3H9-encoded B cells in the germinal center, but it influenced selection of a subset of germinal center cells into the plasma cell compartment. Our data underscore the complexity of regulation of the autoreactive B-cell repertoire by BAFF and may help to explain the heterogeneity of responses observed after BAFF inhibition in humans.
Collapse
Affiliation(s)
- Alexis Boneparth
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Megan Woods
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Weiqing Huang
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Meredith Akerman
- Musculoskeletal Diseases and Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Martin Lesser
- Musculoskeletal Diseases and Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Anne Davidson
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
5
|
Kolhatkar NS, Brahmandam A, Thouvenel CD, Becker-Herman S, Jacobs HM, Schwartz MA, Allenspach EJ, Khim S, Panigrahi AK, Luning Prak ET, Thrasher AJ, Notarangelo LD, Candotti F, Torgerson TR, Sanz I, Rawlings DJ. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome. ACTA ACUST UNITED AC 2015; 212:1663-77. [PMID: 26371186 PMCID: PMC4577851 DOI: 10.1084/jem.20150585] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder frequently associated with systemic autoimmunity, including autoantibody-mediated cytopenias. WAS protein (WASp)-deficient B cells have increased B cell receptor (BCR) and Toll-like receptor (TLR) signaling, suggesting that these pathways might impact establishment of the mature, naive BCR repertoire. To directly investigate this possibility, we evaluated naive B cell specificity and composition in WASp-deficient mice and WAS subjects (n = 12). High-throughput sequencing and single-cell cloning analysis of the BCR repertoire revealed altered heavy chain usage and enrichment for low-affinity self-reactive specificities in murine marginal zone and human naive B cells. Although negative selection mechanisms including deletion, anergy, and receptor editing were relatively unperturbed, WASp-deficient transitional B cells showed enhanced proliferation in vivo mediated by antigen- and Myd88-dependent signals. Finally, using both BCR sequencing and cell surface analysis with a monoclonal antibody recognizing an intrinsically autoreactive heavy chain, we show enrichment in self-reactive cells specifically at the transitional to naive mature B cell stage in WAS subjects. Our combined data support a model wherein modest alterations in B cell-intrinsic, BCR, and TLR signals in WAS, and likely other autoimmune disorders, are sufficient to alter B cell tolerance via positive selection of self-reactive transitional B cells.
Collapse
Affiliation(s)
- Nikita S Kolhatkar
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Archana Brahmandam
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Christopher D Thouvenel
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Shirly Becker-Herman
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Holly M Jacobs
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Marc A Schwartz
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Eric J Allenspach
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Socheath Khim
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Anil K Panigrahi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Adrian J Thrasher
- Molecular Immunology Unit, Section of Molecular and Cellular Immunology, Centre for Immunodeficiency, University College London Institute of Child Health, London WC1N 1EH, England, UK
| | | | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Troy R Torgerson
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Ignacio Sanz
- Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322 Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322
| | - David J Rawlings
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| |
Collapse
|
6
|
Prechl J, Czirják L. The endothelial deprotection hypothesis for lupus pathogenesis: the dual role of C1q as a mediator of clearance and regulator of endothelial permeability. F1000Res 2015; 4:24. [DOI: 10.12688/f1000research.6075.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity.We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role.Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.
Collapse
|
7
|
Prechl J, Czirják L. The endothelial deprotection hypothesis for lupus pathogenesis: the dual role of C1q as a mediator of clearance and regulator of endothelial permeability. F1000Res 2015; 4:24. [PMID: 25901277 PMCID: PMC4392829 DOI: 10.12688/f1000research.6075.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity. We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role. Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.
Collapse
Affiliation(s)
- József Prechl
- Diagnosticum Zrt, Budapest, 1047, Hungary ; MTA-ELTE Immunology Research Group, Budapest, 1117, Hungary
| | - László Czirják
- Department of Rheumatology and Immunology, Clinic Center, University of Pécs, Pécs, 7632, Hungary
| |
Collapse
|
8
|
Umiker BR, McDonald G, Larbi A, Medina CO, Hobeika E, Reth M, Imanishi-Kari T. Production of IgG autoantibody requires expression of activation-induced deaminase in early-developing B cells in a mouse model of SLE. Eur J Immunol 2014; 44:3093-108. [PMID: 25044405 DOI: 10.1002/eji.201344282] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 11/06/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of pathogenic IgG antinuclear antibodies. Pathogenic IgG autoantibody production requires B-cell activation, leading to the production of activation-induced deaminase (AID) and class switching of IgM genes to IgG. To understand how and when B cells are activated to produce these IgG autoantibodies, we studied cells from 564Igi, a mouse model of SLE. 564Igi mice develop a disease profile closely resembling that found in human SLE patients, including the presence of IgG antinucleic acid Abs. We have generated 564Igi mice that conditionally express an activation-induced cytidine deaminase transgene (Aicda(tg) ), either in all B cells or only in mature B cells. Here, we show that class-switched pathogenic IgG autoantibodies were produced only in 564Igi mice in which AID was functional in early-developing B cells, resulting in loss of tolerance. Furthermore, we show that the absence of AID in early-developing B cells also results in increased production of self-reactive IgM, indicating that AID, through somatic hypermutation, contributes to tolerance. Our results suggest that the pathophysiology of clinical SLE might also be dependent on AID expression in early-developing B cells.
Collapse
Affiliation(s)
- Benjamin R Umiker
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Integrative Physiology and Pathobiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2014; 36:495-517. [PMID: 25102991 DOI: 10.1007/s00281-014-0440-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkably complex and heterogeneous systemic autoimmune disease. Disease complexity within individuals and heterogeneity among individuals, even genetically identical individuals, is driven by stochastic execution of a complex inherited program. Genome-wide association studies (GWAS) have progressively improved understanding of which genes are most critical to the potential for SLE and provided illuminating insight about the immune mechanisms that are engaged in SLE. What initiates expression of the genetic program to cause SLE within an individual and how that program is initiated remains poorly understood. If we extrapolate from all of the different experimental mouse models for SLE, we can begin to appreciate why SLE is so heterogeneous and consequently why prediction of disease outcome is so difficult. In this review, we critically evaluate extrinsic versus intrinsic cellular functions in the clearance and elimination of cellular debris and how dysfunction in that system may promote autoimmunity to nuclear antigens. We also examine several mouse models genetically prone to SLE either because of natural inheritance or inheritance of induced mutations to illustrate how different immune mechanisms may initiate autoimmunity and affect disease pathogenesis. Finally, we describe the heterogeneity of disease manifestations in SLE and discuss the mechanisms of disease pathogenesis with emphasis on glomerulonephritis. Particular attention is given to discussion of how anti-DNA autoantibody initiates experimental lupus nephritis (LN) in mice.
Collapse
|
10
|
Decker DA, Grant C, Oh L, Becker PM, Young D, Jordan S. Immunomodulatory effects of H.P. Acthar Gel on B cell development in the NZB/W F1 mouse model of systemic lupus erythematosus. Lupus 2014; 23:802-12. [DOI: 10.1177/0961203314531840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/17/2014] [Indexed: 12/29/2022]
Abstract
H.P. Acthar Gel® (Acthar) is a highly purified repository gel preparation of adrenocorticotropic hormone (ACTH1-39), a melanocortin peptide that can bind and activate specific receptors expressed on a range of systemic lupus erythematosus (SLE)-relevant target cells and tissues. This study was performed to evaluate the effects of Acthar in a mouse model of SLE, using an F1 hybrid of the New Zealand Black and New Zealand White strains (NZB/W F1). Twenty-eight week old NZB/W F1 mice with established autoimmune disease were treated with Acthar, Placebo Gel (Placebo), or prednisolone and monitored for 19 weeks. Outcomes assessed included disease severity (severe proteinuria, ≥ 20% body weight loss, or prostration), measurement of serial serum autoantibody titers, terminal spleen immunophenotyping, and evaluation of renal histopathology. Acthar treatment was linked with evidence of altered B cell differentiation and development, manifested by a significant reduction in splenic B cell follicular and germinal center cells, and decreased levels of circulating total and anti-double-stranded DNA (IgM, IgG, and IgG2a) autoantibodies as compared with Placebo. Additionally, Acthar treatment resulted in a significant decrease of proteinuria, reduced renal lymphocyte infiltration, and attenuation of glomerular immune complex deposition. These data suggest that Acthar diminished pathogenic autoimmune responses in the spleen, peripheral blood, and kidney of NZB/W F1 mice. This is the first preclinical evidence demonstrating Acthar's potential immunomodulatory activity and efficacy in a murine model of systemic lupus erythematosus.
Collapse
Affiliation(s)
- DA Decker
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - C Grant
- Biomedical Research Models, Inc., Worcester, MA, USA
| | - L Oh
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - PM Becker
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - D Young
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - S Jordan
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| |
Collapse
|
11
|
Makdasi E, Eilat D. L chain allelic inclusion does not increase autoreactivity in lupus-prone New Zealand Black/New Zealand White mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:1472-80. [PMID: 23319731 DOI: 10.4049/jimmunol.1202331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
L chain allelic inclusion has been proposed as a B cell tolerance mechanism in addition to clonal deletion, clonal anergy, and receptor editing. It is said to rescue autoreactive B cells from elimination by diluting out the self-reactive BCR through the expression of a second innocuous L chain. In autoimmune animals, such as lupus-prone mice, allelically included B cells could be activated and produce pathogenic autoantibodies. We have previously shown that anti-DNA hybridomas from diseased New Zealand Black/New Zealand White F1 mice exhibit nearly perfect allelic exclusion. In the current study, we have analyzed single B cells from these and from nonautoimmune mice. In addition, we have cloned and expressed the Ig variable regions of several L chain-included B cells in cell culture. We find that although the number of L chain-included B cells increases as a result of receptor editing, the majority of such cells do not retain an autoreactive HxL chain combination and, therefore, allelic inclusion in itself does not serve as a B cell tolerance mechanism in these autoimmune mice.
Collapse
Affiliation(s)
- Efi Makdasi
- Department of Medicine, Hadassah University Hospital, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
12
|
Schroeder K, Herrmann M, Winkler TH. The role of somatic hypermutation in the generation of pathogenic antibodies in SLE. Autoimmunity 2013. [DOI: 10.3109/08916934.2012.748751] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME. Lupus nephritis: a critical review. Autoimmun Rev 2012; 12:174-94. [PMID: 22982174 DOI: 10.1016/j.autrev.2012.08.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2012] [Indexed: 01/18/2023]
Abstract
Lupus nephritis remains one of the most severe manifestations of systemic lupus erythematosus associated with considerable morbidity and mortality. A better understanding of the pathogenesis of lupus nephritis is an important step in identifying more targeted and less toxic therapeutic approaches. Substantial research has helped define the pathogenetic mechanisms of renal manifestations and, in particular, the complex role of type I interferons is increasingly recognized; new insights have been gained into the contribution of immune complexes containing endogenous RNA and DNA in triggering the production of type I interferons by dendritic cells via activation of endosomal toll-like receptors. At the same time, there have been considerable advances in the treatment of lupus nephritis. Corticosteroids have long been the cornerstone of therapy, and the addition of cyclophosphamide has contributed to renal function preservation in patients with severe proliferative glomerulonephritis, though at the cost of serious adverse events. More recently, in an effort to minimize drug toxicity and achieve equal effectiveness, other immunosuppressive agents, including mycophenolate mofetil, have been introduced. Herein, we provide a detailed review of the trials that established the equivalency of these agents in the induction and/or maintenance therapy of lupus nephritis, culminating in the recent publication of new treatment guidelines by the American College of Rheumatology. Although newer biologics have been approved and continue to be a focus of research, they have, for the most part, been relatively disappointing compared to the effectiveness of biologics in other autoimmune diseases. Early diagnosis and treatment are essential for renal preservation.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, United States
| | | | | | | | | | | |
Collapse
|