1
|
Immunoprofiling of 4-1BB Expression Predicts Outcome in Chronic Lymphocytic Leukemia (CLL). Diagnostics (Basel) 2021; 11:diagnostics11112041. [PMID: 34829391 PMCID: PMC8622208 DOI: 10.3390/diagnostics11112041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Recent success of novel therapies has improved treatment of chronic lymphocytic leukemia (CLL) patients, but most of them still require several treatment regimes. To improve treatment choice, prognostic markers suitable for prediction of disease outcome are required. Several molecular/genetic markers have been established, but accessibility for the entirety of all patients is limited. We here evaluated the relevance of GITR/4-1BB as well as their ligands for the prognosis of CLL patients. Surface expression of GITR/GITRL and 4-1BB/4-1BBL was correlated with established prognostic markers. Next, we separated our patient population according to GITR/GITRL and 4-1BB/4-1BBL expression in groups with high/low expression levels and performed Kaplan-Meier analyses. Interestingly, no correlation was observed with the defined prognostic markers. Whereas no significant difference between high and low expression of GITR, GITRL and 4-1BBL was observed, high 4-1BB levels on leukemic cells were associated with significantly shorter survival. Thereby we identify 4-1BB as prognostic marker for CLL.
Collapse
|
2
|
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2017; 44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.
Collapse
Affiliation(s)
- Lindsay K Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wai Wai Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Šedý
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Rahman MM, Badruzzaman ATM, Altaf Hossain FM, Husna A, Bari AM, Eo SK. The promise of 4-1BB (CD137) mediated immunomodulation and immunotherapy for viral diseases. Future Virol 2017. [DOI: 10.2217/fvl-2016-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The T-cell surface receptor, 4-1BB (CD137), has been of increasing interest to immunologists as a co-stimulatory immune checkpoint molecule over the last two decades. Ligation of 4-1BB can activate signals in CD8+ T cells and NK cells, resulting in increased proinflammatory cytokine secretion, cytolytic function and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB, using a 4-1BB ligand (4-1BBL) or agonistic monoclonal antibodies, has delivered a new strategy to fight against cancer, autoimmune diseases and viral infections. In this review, different aspects of 4-1BB mediated antiviral responses, the mechanistic basis of such responses and future directions are discussed.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - ATM Badruzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Asmaul Husna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Abusaleh Mahfuzul Bari
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seong Kug Eo
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
4
|
Schmohl JU, Nuebling T, Wild J, Kroell T, Kanz L, Salih HR, Schmetzer H. Expression of 4-1BB and its ligand on blasts correlates with prognosis of patients with AML. J Investig Med 2016; 64:1252-1260. [PMID: 27388616 DOI: 10.1136/jim-2016-000081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/12/2022]
Abstract
Costimulatory ligands (COLs) and their receptors (COR) regulate immune reactions and cellular survival and might be relevant in acute myeloid leukemia (AML). This study evaluated the clinical relevance of 4-1BBL, glucocorticoid-induced TNFR-related protein (GITR) and ligand (GITRL), CD80, and CD86 in case of expression on AML blasts. 98 patients were evaluated at initial diagnosis. Immunophenotypically evaluated specific fluorescence index (SFI) levels of COR and COL on blasts were correlated with morphological, cytogenetic, and several prognostic parameters. Significantly higher COR expression was seen in monocytic versus non-monocytic AML subtypes; GITR, p=0.05; GITRL, p=0.005; CD86, p=0.001). Cut-off values for two COR and their ligands were evaluated: cases presenting with 4-1BB values above cut-off 1.2 SFI levels correlated (tendentially) significantly with a higher probability for disease-free survival (DFS, p=0.06) and a favorable HR of 0.2; p=0.04 for relapse. HR for death was also significantly lower in this group (0.12; p=0.04). In contrast, a lower probability for DFS and overall survival was seen in cases with 4-1BBL expression above 2.2 SFI levels (p=0.08 and p=0.09). In addition, multivariate analysis showed a significantly higher probability of death in this group (HR 10.3, p=0.04). Expression of CD80 and CD86 did not show significant prognostic relevance. On initial diagnosis, 4-1BB and 4-1BBL qualify as markers for prediction of patients' course and represent a valuable screening target for patients with AML at initial diagnosis.
Collapse
Affiliation(s)
- Joerg U Schmohl
- Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota, USA.,Department of Hematology and Oncology, Medical Department 2, University Hospital of Tuebingen, Tuebingen, Germany
| | - Tina Nuebling
- Department of Hematology and Oncology, Medical Department 2, University Hospital of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, Department for Internal Medicine II, German Cancer Consortium and German Cancer Research Center, Partner site Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Julia Wild
- Department of Hematology and Oncology, Medical Department 2, University Hospital of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, Department for Internal Medicine II, German Cancer Consortium and German Cancer Research Center, Partner site Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tanja Kroell
- Department for Hematopoetic Cell Transplantation, Medical Department 3, University Hospital of Munich, Munich, Germany
| | - Lothar Kanz
- Department of Hematology and Oncology, Medical Department 2, University Hospital of Tuebingen, Tuebingen, Germany
| | - Helmut R Salih
- Department of Hematology and Oncology, Medical Department 2, University Hospital of Tuebingen, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, Department for Internal Medicine II, German Cancer Consortium and German Cancer Research Center, Partner site Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Helga Schmetzer
- Department for Hematopoetic Cell Transplantation, Medical Department 3, University Hospital of Munich, Munich, Germany
| |
Collapse
|
5
|
Kim SB, Choi JY, Kim JH, Uyangaa E, Patil AM, Park SY, Lee JH, Kim K, Han YW, Eo SK. Amelioration of Japanese encephalitis by blockage of 4-1BB signaling is coupled to divergent enhancement of type I/II IFN responses and Ly-6C(hi) monocyte differentiation. J Neuroinflammation 2015; 12:216. [PMID: 26597582 PMCID: PMC4657197 DOI: 10.1186/s12974-015-0438-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022] Open
Abstract
Background Japanese encephalitis (JE), a neuroinflammation caused by zoonotic JE virus, is the major cause of viral encephalitis worldwide and poses an increasing threat to global health and welfare. To date, however, there has been no report describing the regulation of JE progression using immunomodulatory tools for developing therapeutic strategies. We tested whether blocking the 4-1BB signaling pathway would regulate JE progression using murine JE model. Methods Infected wild-type and 4-1BB-knockout (KO) mice were examined daily for mortality and clinical signs, and neuroinflammation in the CNS was evaluated by infiltration of inflammatory leukocytes and cytokine expression. In addition, viral burden, JEV-specific T cell, and type I/II IFN (IFN-I/II) innate responses were analyzed. Results Blocking the 4-1BB signaling pathway significantly increased resistance to JE and reduced viral burden in extraneural tissues and the CNS, rather than causing a detrimental effect. In addition, treatment with 4-1BB agonistic antibody exacerbated JE. Furthermore, JE amelioration and reduction of viral burden by blocking the 4-1BB signaling pathway were associated with an increased frequency of IFN-II-producing NK and CD4+ Th1 cells as well as increased infiltration of mature Ly-6Chi monocytes in the inflamed CNS. More interestingly, DCs and macrophages derived from 4-1BB KO mice showed potent and rapid IFN-I innate immune responses upon JEV infection, which was coupled to strong induction of PRRs (RIG-I, MDA5), transcription factors (IRF7), and antiviral ISG genes (ISG49, ISG54, ISG56). Further, the ablation of 4-1BB signaling enhanced IFN-I innate responses in neuron cells, which likely regulated viral spread in the CNS. Finally, we confirmed that blocking the 4-1BB signaling pathway in myeloid cells derived from hematopoietic stem cells (HSCs) played a dominant role in ameliorating JE. In support of this finding, HSC-derived leukocytes played a dominant role in generating the IFN-I innate responses in the host. Conclusions Blocking the 4-1BB signaling pathway ameliorates JE via divergent enhancement of IFN-II-producing NK and CD4+ Th1 cells and mature Ly-6Chi monocyte infiltration, as well as an IFN-I innate response of myeloid-derived cells. Therefore, regulation of the 4-1BB signaling pathway with antibodies or inhibitors could be a valuable therapeutic strategy for the treatment of JE.
Collapse
Affiliation(s)
- Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Young Woo Han
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea. .,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|