1
|
Chikata T, Gatanaga H, Nguyen HT, Mizushima D, Zhang Y, Kuse N, Oka S, Takiguchi M. HIV-1 protective epitope-specific CD8 + T cells in HIV-1-exposed seronegative individuals. iScience 2023; 26:108089. [PMID: 37867946 PMCID: PMC10589889 DOI: 10.1016/j.isci.2023.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Although previous studies have reported HIV-1-specific T cell responses in HIV-1-exposed seronegative (HESN) individuals, there has been no detailed analysis of these T cells against HIV-1 infection. We investigated HIV-1-specific CD8+ T cell responses in 200 Japanese HESN men who have sex with men (MSM). T cell responses to 143 well-characterized HIV-1 epitope peptides were analyzed by intracellular cytokine staining assay consisting of 3-week cultures of PBMCs stimulated with peptides. HLA-B∗51:01-restricted Pol TI8-specific and HLA-A∗02:06-restricted Pol SV9-specific CD8+ T cells were identified in two and one individuals, respectively, whereas CD8+ T cells specific for other HLA-A∗02:06-restricted or HLA-B∗51:01 epitopes were not present in these individuals. These epitope-specific T cells recognized HIV-1-infected cells. Because these two epitopes were previously reported to be protective in HIV-1-infected individuals, these protective epitope-specific T cells might suppress HIV-1 replication in HESN-MSM individuals. The present study suggests the contribution of protective epitope-specific T cells to protection against HIV-1 infection.
Collapse
Affiliation(s)
- Takayuki Chikata
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Hung The Nguyen
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Daisuke Mizushima
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Yu Zhang
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Nozomi Kuse
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| |
Collapse
|
2
|
Francisco Junior RDS, Temerozo JR, Ferreira CDS, Martins Y, Souza TML, Medina-Acosta E, de Vasconcelos ATR. Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of human lung cell lines. Front Immunol 2023; 13:1101526. [PMID: 36818472 PMCID: PMC9929942 DOI: 10.3389/fimmu.2022.1101526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.
Collapse
Affiliation(s)
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Cristina dos Santos Ferreira
- Bioinformatics Laboratory (LABINFO), National Laboratory of Scientific Computation (LNCC/MCTIC), Petrópolis, Brazil
| | - Yasmmin Martins
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations (INCT/IDNP), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Enrique Medina-Acosta
- Molecular Identification and Diagnostics Unit (NUDIM), Laboratory of Biotechnology, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | |
Collapse
|
3
|
Ma K, Chai Y, Guan J, Tan S, Qi J, Kawana-Tachikawa A, Dong T, Iwamoto A, Shi Y, Gao GF. Molecular Basis for the Recognition of HIV Nef138-8 Epitope by a Pair of Human Public T Cell Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1652-1661. [PMID: 36130828 DOI: 10.4049/jimmunol.2200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Cross-recognized public TCRs against HIV epitopes have been proposed to be important for the control of AIDS disease progression and HIV variants. The overlapping Nef138-8 and Nef138-10 peptides from the HIV Nef protein are HLA-A24-restricted immunodominant T cell epitopes, and an HIV mutant strain with a Y139F substitution in Nef protein can result in immune escape and is widespread in Japan. Here, we identified a pair of public TCRs specific to the HLA-A24-restricted Nef-138-8 epitope using PBMCs from White and Japanese patients, respectively, namely TD08 and H25-11. The gene use of the variable domain for TD08 and H25-11 is TRAV8-3, TRAJ10 for the α-chain and TRBV7-9, TRBD1*01, TRBJ2-5 for the β-chain. Both TCRs can recognize wild-type and Y2F-mutated Nef138-8 epitopes. We further determined three complex structures, including TD08/HLA-A24-Nef138-8, H25-11/HLA-A24-Nef138-8, and TD08/HLA-A24-Nef138-8 (2F). Then, we revealed the molecular basis of the public TCR binding to the peptide HLA, which mostly relies on the interaction between the TCR and HLA and can tolerate the mutation in the Nef138-8 peptide. These findings promote the molecular understanding of T cell immunity against HIV epitopes and provide an important basis for the engineering of TCRs to develop T cell-based immunotherapy against HIV infection.
Collapse
Affiliation(s)
- Keke Ma
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Guan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuguang Tan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK; and
| | - Aikichi Iwamoto
- Department of Research Promotion, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yi Shi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Akahoshi T, Gatanaga H, Kuse N, Chikata T, Koyanagi M, Ishizuka N, Brumme CJ, Murakoshi H, Brumme ZL, Oka S, Takiguchi M. T-cell responses to sequentially emerging viral escape mutants shape long-term HIV-1 population dynamics. PLoS Pathog 2020; 16:e1009177. [PMID: 33370400 PMCID: PMC7833229 DOI: 10.1371/journal.ppat.1009177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.
Collapse
Affiliation(s)
| | - Hiroyuki Gatanaga
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Shinichi Oka
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Determination of a T cell receptor of potent CD8 + T cells against simian immunodeficiency virus infection in Burmese rhesus macaques. Biochem Biophys Res Commun 2019; 521:894-899. [PMID: 31711644 DOI: 10.1016/j.bbrc.2019.10.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022]
Abstract
Cumulative studies on human immunodeficiency virus (HIV)-infected individuals have shown association of major histocompatibility complex class I (MHC-I) polymorphisms with lower viral load and delayed AIDS progression, suggesting that HIV replication can be controlled by potent CD8+ T-cell responses. We have previously established an AIDS model of simian immunodeficiency virus (SIV) infection in Burmese rhesus macaques and found a potent CD8+ T cell targeting the Mamu-A1*065:01-restricted Gag241-249 epitope, which is located in a region corresponding to the HIV Gag240-249 TW10 epitope restricted by a protective MHC-I allele, HLA-B*57. In the present study, we determined a T cell receptor (TCR) of this Gag241-249 epitope-specific CD8+ T cell. cDNA clones encoding TCR-α and TCR-β chains were obtained from a Gag241-249-specific CD8+ T-cell clone. Coexpression of these TCR-α and TCR-β cDNAs resulted in reconstitution of a functional TCR specifically detected by Gag241-249 epitope-Mamu-A1*065:01 tetramer. Two of three previously-reported CD8+ T-cell escape mutations reduced binding affinity of Gag241-249 peptide to Mamu-A1*065:01 but the remaining one not. This is consistent with the data obtained by molecular modeling of the epitope-MHC-I complex and TCR. These results would contribute to understanding how viral CD8+ T-cell escape mutations are selected under structural constraint of viral proteins.
Collapse
|
6
|
Accumulation of Pol Mutations Selected by HLA-B*52:01-C*12:02 Protective Haplotype-Restricted Cytotoxic T Lymphocytes Causes Low Plasma Viral Load Due to Low Viral Fitness of Mutant Viruses. J Virol 2017; 91:JVI.02082-16. [PMID: 27903797 DOI: 10.1128/jvi.02082-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/21/2016] [Indexed: 01/22/2023] Open
Abstract
HLA-B*52:01-C*12:02, which is the most abundant haplotype in Japan, has a protective effect on disease progression in HIV-1-infected Japanese individuals, whereas HLA-B*57 and -B*27 protective alleles are very rare in Japan. A previous study on HLA-associated polymorphisms demonstrated that the number of HLA-B*52:01-associated mutations at four Pol positions was inversely correlated with plasma viral load (pVL) in HLA-B*52:01-negative individuals, suggesting that the transmission of HIV-1 with these mutations could modulate the pVL in the population. However, it remains unknown whether these mutations were selected by HLA-B*52:01-restricted CTLs and also reduced viral fitness. In this study, we identified two HLA-B*52:01-restricted and one HLA-C*12:02-restricted novel cytotoxic T-lymphocyte (CTL) epitopes in Pol. Analysis using CTLs specific for these three epitopes demonstrated that these CTLs failed to recognize mutant epitopes or more weakly recognized cells infected with mutant viruses than wild-type virus, supporting the idea that these mutations were selected by the HLA-B*52:01- or HLA-C*12:02-restricted T cells. We further showed that these mutations reduced viral fitness, although the effect of each mutation was weak. The present study demonstrated that the accumulation of these Pol mutations selected by HLA-B*52:01- or HLA-C*12:02-restricted CTLs impaired viral replication capacity and thus reduced the pVL. The fitness cost imposed by the mutations partially accounted for the effect of the HLA-B*52:01-C*12:02 haplotype on clinical outcome, together with the effect of HLA-B*52:01-restricted CTLs on viral replication, which had been previously demonstrated. IMPORTANCE Numerous population-based studies identified HLA-associated HIV-1 mutations to predict HIV-1 escape mutations from cytotoxic T lymphocytes (CTLs). However, the majority of these HLA-associated mutations have not been identified as CTL escape mutations. Our previous population-based study showed that five HLA-B*52:01-associated mutations at four Pol positions were inversely correlated with the plasma viral load in HLA-B*52:01-negative Japanese individuals. In the present study, we demonstrated that these mutations were indeed selected by CTLs specific for novel B*52:01- and C*12:02-restricted epitopes and that the accumulation of these mutations reduced the viral fitness in vitro This study elucidated the mechanism by which the accumulation of these CTL escape mutations contributed to the protective effect of the HLA-B*52:01-HLA-C*12:02 haplotype on disease progression in HIV-1-infected Japanese individuals.
Collapse
|
7
|
Hayashida T, Hachiya A, Ode H, Nishijima T, Tsuchiya K, Sugiura W, Takiguchi M, Oka S, Gatanaga H. Rilpivirine resistance mutation E138K in HIV-1 reverse transcriptase predisposed by prevalent polymorphic mutations. J Antimicrob Chemother 2016; 71:2760-6. [PMID: 27330069 DOI: 10.1093/jac/dkw224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/11/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rilpivirine is listed as a recommended or alternative key drug in the current ART guidelines. E138K in HIV-1 reverse transcriptase (RT) is a primary mutation in resistance to rilpivirine, although in vitro experiments showed it confers only <3-fold resistance. An unidentified mechanism could amplify resistance to rilpivirine conferred by E138K. OBJECTIVES The objective of this study was to reveal the mechanism amplifying rilpivirine resistance conferred by E138K. PATIENTS AND METHODS HIV-1 RT sequences were compared in patients who failed rilpivirine-containing ART virologically. The effects of mutations commonly identified with E138K on rilpivirine susceptibility were analysed by using recombinant HIV-1 variants. RESULTS Rilpivirine-containing ART was introduced in 162 HIV-1-infected patients at the outpatient clinic of the AIDS Clinical Center (National Center for Global Health and Medicine, Tokyo, Japan) between May 2012 and June 2015. Virological treatment failure occurred in six of these patients. E138K emerged in three patients while other rilpivirine resistance mutations emerged in the other three patients. I135T/L were identified in only three patients with E138K and existed before the introduction of rilpivirine-containing ART. Analysis of recombinant HIV-1 variants indicated that E138K conferred low-level rilpivirine resistance and that coexistence of I135T/L with E138K amplified the resistance. CONCLUSIONS I135T/L, escape mutations from HLA-B*51/52-restricted cytotoxic T lymphocytes, which are prevalent in Japan, may predispose HIV-1 to harbour E138K upon failure of rilpivirine-containing ART. The mutation patterns of drug resistance may vary due to baseline polymorphic mutations.
Collapse
Affiliation(s)
- Tsunefusa Hayashida
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takeshi Nishijima
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Sun X, Shi Y, Akahoshi T, Fujiwara M, Gatanaga H, Schönbach C, Kuse N, Appay V, Gao GF, Oka S, Takiguchi M. Effects of a Single Escape Mutation on T Cell and HIV-1 Co-adaptation. Cell Rep 2016; 15:2279-2291. [PMID: 27239036 DOI: 10.1016/j.celrep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level.
Collapse
Affiliation(s)
- Xiaoming Sun
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mamoru Fujiwara
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Christian Schönbach
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Victor Appay
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; INSERM, Unité Mixte de Recherche 1135, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre d'Immunologie et des Maladies Infectieuses-Paris, 75013 Paris, France
| | - George F Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
9
|
Grant EJ, Quiñones-Parra SM, Clemens EB, Kedzierska K. Human influenza viruses and CD8(+) T cell responses. Curr Opin Virol 2016; 16:132-142. [PMID: 26974887 DOI: 10.1016/j.coviro.2016.01.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
10
|
TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr Opin Virol 2016; 16:77-85. [PMID: 26874617 DOI: 10.1016/j.coviro.2016.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/02/2023]
Abstract
Because of the enormous complexity and breadth of the overall HIV-specific CD8(+) T-cell response, invaluable information regarding important aspects of T-cell efficacy against HIV can be sourced from studies performed on individual clonotypes. Data gathered from ex vivo and in vitro analyses of T-cell responses and viral evolution bring us one step closer towards deciphering the correlates of protection against HIV. HIV-responsive CD8(+) T-cell populations are characterized by specific clonotypic immunodominance patterns and public TCRs. The TCR endows T-cells with two key features, important for the effective control of HIV: avidity and crossreactivity. While TCR avidity is a major determinant of CD8(+) T-cell functional efficacy against the virus, crossreactivity towards wildtype and mutant viral epitopes is crucial for adaptation to HIV evolution. The properties of CD4(+) T-cell responses in HIV controllers appear also to be shaped by high avidity public TCR clonotypes. The molecular nature of the TCR, together with the clonotypic composition of the HIV-specific T-cell response, emerge as major determinants of anti-viral efficacy.
Collapse
|