1
|
Wang Y, Zhang Y, Hughes T, Zhang J, Caligiuri MA, Benson DM, Yu J. Fratricide of NK Cells in Daratumumab Therapy for Multiple Myeloma Overcome by Ex Vivo-Expanded Autologous NK Cells. Clin Cancer Res 2018; 24:4006-4017. [PMID: 29666301 DOI: 10.1158/1078-0432.ccr-17-3117] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/08/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022]
Abstract
Purpose: Daratumumab and its use in combination with other agents is becoming a new standard of care for the treatment of multiple myeloma. We mechanistically studied how daratumumab acts on natural killer (NK) cells.Experimental Design: Quantities of NK cells in peripheral blood and/or bone marrow of patients with multiple myeloma or healthy donors were examined by flow cytometry. NK-cell apoptosis and the associated mechanism were assessed by flow cytometry and immunoblotting. Patients' NK cells were expanded in vitro using feeder cells. Combination treatment of daratumumab and expanded NK cells was performed using an MM.1S xenograft animal model.Results: CD38-/low NK cells survived, whereas CD38+ NK cells were almost completely eliminated, in peripheral blood and bone marrow of daratumumab-treated multiple myeloma patients. NK-cell depletion occurred due to daratumumab-induced NK-cell fratricide via antibody-dependent cellular cytotoxicity. Consequently, CD38-/low NK cells were more effective for eradicating multiple myeloma cells than were CD38+ NK cells in the presence of daratumumab. Blockade of CD38 with the F(ab)2 fragments of daratumumab inhibited the antibody-mediated NK-cell fratricide. CD38-/low NK cells displayed a significantly better potential for expansion than CD38+ NK cells, and the expanded NK cells derived from the former population were more cytotoxic than those derived from the latter against multiple myeloma cells. Therefore, infusion of ex vivo-expanded autologous NK cells from daratumumab-treated patients may improve the antibody therapy.Conclusions: We unravel a fratricide mechanism for daratumumab-mediated NK-cell depletion and provide a potential therapeutic strategy to overcome this side effect in daratumumab-treated patients with multiple myeloma. Clin Cancer Res; 24(16); 4006-17. ©2018 AACR.
Collapse
Affiliation(s)
- Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Yibo Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Tiffany Hughes
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, Columbus, Ohio
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Center for Biostatistics, Department of Bioinformatics, Columbus, Ohio.,The James Cancer Hospital, Columbus, Ohio.,Division of Hematology, Department of Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Don M Benson
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Center for Biostatistics, Department of Bioinformatics, Columbus, Ohio.,The James Cancer Hospital, Columbus, Ohio.,Division of Hematology, Department of Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. .,Center for Biostatistics, Department of Bioinformatics, Columbus, Ohio.,The James Cancer Hospital, Columbus, Ohio.,Division of Hematology, Department of Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Erlendsson LS, Muench MO, Hellman U, Hrafnkelsdóttir SM, Jonsson A, Balmer Y, Mäntylä E, Orvar BL. Barley as a green factory for the production of functional Flt3 ligand. Biotechnol J 2010; 5:163-71. [PMID: 19844912 DOI: 10.1002/biot.200900111] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.
Collapse
|
3
|
Scheeren FA, van Lent AU, Nagasawa M, Weijer K, Spits H, Legrand N, Blom B. Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. Eur J Immunol 2010; 40:955-65. [DOI: 10.1002/eji.200939419] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Bárcena A, Muench MO, Kapidzic M, Fisher SJ. A new role for the human placenta as a hematopoietic site throughout gestation. Reprod Sci 2009; 16:178-87. [PMID: 19208786 DOI: 10.1177/1933719108327621] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated whether the human placenta contributes to embryonic and fetal hematopoietic development. Two cell populations--CD34(++)CD45(low) and CD34( +)CD45(low)--were found in chorionic villi. CD34(++) CD45(low) cells display many markers that are characteristic of multipotent primitive hematopoietic progenitors and hematopoietic stem cells. Clonogenic in vitro assays showed that CD34(++)CD45( low) cells contained colony-forming units-culture with myeloid and erythroid potential and differentiated into CD56(+) natural killer cells and CD19(+) B cells in culture. CD34(+)CD45(low) cells were mostly enriched in erythroid- and myeloid-committed progenitors. While the number of CD34(++)CD45(low) cells increased throughout gestation in parallel with placental mass. However, their density (cells per gram of tissue) reached its peak at 5 to 8 weeks, decreasing more than 7-fold from the ninth week onward. In addition to multipotent progenitors, the placenta contained intermediate progenitors, indicative of active hematopoiesis. Together, these data suggest that the human placenta is potentially an important hematopoietic organ, opening the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.
Collapse
Affiliation(s)
- Alicia Bárcena
- Institute for Regeneration Medicine, Human Embryonic Stem Cell Program, Department of Cell and Tissue Biology, University of California at San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
5
|
Holloway JA, Thornton CA, Diaper ND, Howe DT, Warner JO. Phenotypic analysis of circulating dendritic cells during the second half of human gestation. Pediatr Allergy Immunol 2009; 20:119-25. [PMID: 18798798 DOI: 10.1111/j.1399-3038.2008.00771.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic cells (DCs) have been characterized as having an immature phenotype in infants when compared with adults; but it is unclear whether the phenotype or function of these populations changes during human intrauterine development. Three-colour flow cytometry was used to phenotype fetal/neonatal circulating DCs during the second half (>20-wk gestation) of pregnancy, (n = 34) and adults (n = 9). DCs were identified from peripheral blood mononuclear cells (PBMCs) or cord blood mononuclear cells (CBMCs) as staining brightly for HLA-DR but negative for T cell, B cell, monocyte, and NK cell lineage markers. The surface molecule of interest was detected in a third colour. During gestation CD34, a marker of immaturity was significantly higher, and CD4, a differentiation marker, was significantly lower than adult levels. The percentage of CD11c+ cells did not differ significantly at any age, although a trend to reduced intensity of expression at earlier stages of gestation was observed. Significantly fewer DCs expressed the IgG receptors CD32 and CD64 at all gestations. The percentage of HLA-DR+/lin- cells expressing CD40 was lowest at 20-23 wks and was always significantly lower on DCs from cord blood vs. adult blood. Similarly, the percentage of CD86+ and CD54+ DCs was significantly lower than adults throughout gestation. Thus, immaturity of cord blood DCs is likely to arise as a consequence of decreased ability to take up antigen (at least via IgG-mediated mechanisms) and reduced provision of co-stimulation.
Collapse
|
6
|
Bárcena A, Kapidzic M, Muench MO, Gormley M, Scott MA, Weier JF, Ferlatte C, Fisher SJ. The human placenta is a hematopoietic organ during the embryonic and fetal periods of development. Dev Biol 2008; 327:24-33. [PMID: 19073167 DOI: 10.1016/j.ydbio.2008.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 01/23/2023]
Abstract
We studied the potential role of the human placenta as a hematopoietic organ during embryonic and fetal development. Placental samples contained two cell populations-CD34(++)CD45(low) and CD34(+)CD45(low)-that were found in chorionic villi and in the chorioamniotic membrane. CD34(++)CD45(low) cells express many cell surface antigens found on multipotent primitive hematopoietic progenitors and hematopoietic stem cells. CD34(++)CD45(low) cells contained colony-forming units culture (CFU-C) with myeloid and erythroid potential in clonogenic in vitro assays, and they generated CD56(+) natural killer cells and CD19(+)CD20(+)sIgM(+) B cells in polyclonal liquid cultures. CD34(+)CD45(low) cells mostly comprised erythroid- and myeloid-committed progenitors, while CD34(-) cells lacked CFU-C. The placenta-derived precursors were fetal in origin, as demonstrated by FISH using repeat-sequence chromosome-specific probes for X and Y. The number of CD34(++)CD45(low) cells increased with gestational age, but their density (cells per gram of tissue) peaked at 5-8 wk, decreasing more than sevenfold at the onset of the fetal phase (9 wk of gestation). In addition to multipotent progenitors, the placenta contained myeloid- and erythroid-committed progenitors indicative of active in situ hematopoiesis. These data suggest that the human placenta is an important hematopoietic organ, raising the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.
Collapse
Affiliation(s)
- Alicia Bárcena
- Institute for Regeneration Medicine, Human Embryonic Stem Cell Program, Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, HSE-1619, San Francisco, California 94143-0512, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Biziuleviciene G, Puidokaite G, Siaurys A, Mauricas M. An anti-inflammatory effect of murine fetal liver cells in BALB/c mouse contact hypersensitivity model. Int Immunopharmacol 2007; 7:744-9. [PMID: 17466908 DOI: 10.1016/j.intimp.2007.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
Anti-inflammatory effects of murine fetal liver (FL) cells were studied using BALB/c mouse contact hypersensitivity (paw edema) model. Paw weight differences, lymphatic organ weights, hematological and histological indices as well as proinflammatory (TNF-alpha) and anti-inflammatory (IL-10) cytokine levels in sera were evaluated. Immunophenotyping revealed that both murine FL homogenate cells (HC) and FL hematopoietic stem cells (HSC) express CD117 and CD38 surface markers. Single doses of 1x10(6) cells/mouse and 2x10(6) cells/mouse of FL HC as well as of FL HSC, when used separately, all statistically significantly (p<0.05) inhibited paw edema, but the lower dose was more effective and giving results similar to that of prednisolone. Either dose of FL HC or FL HSC studied had no significant influence on lymphatic organ weights; no significant changes were also observed in blood indices. The data of cytokine studies showed that TNF-alpha concentration in sera of mice treated with either FL HC or FL HSC at a dose of 1x10(6) cells/mouse was statistically significantly (p<0.001) lower than that of the control mice. A concentration of IL-10 was statistically significantly higher (p<0.01) in mice treated with a dose of 1x10(6) cells/mouse of FL HC but not with the same dose of FL HSC as compared to the control group. Histological examination revealed better effects of a dose of 1x10(6) cells/mouse of FL HC when compared with the same dose of FL HSC as in regard to reduction of edema thickness and cell infiltration.
Collapse
Affiliation(s)
- Gene Biziuleviciene
- Laboratory of Immunopharmacology, Institute of Immunology, Vilnius University, 29 Moletu Plentas, Vilnius, Lithuania.
| | | | | | | |
Collapse
|
8
|
Muench MO, Ohkubo T, Smith CA, Suskind DL, Bárcena A. Maintenance of proliferative capacity and retroviral transduction efficiency of human fetal CD38(-)/CD34(++) stem cells. Stem Cells Dev 2006; 15:97-108. [PMID: 16522167 DOI: 10.1089/scd.2006.15.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methods for the efficient transduction and expansion of fetal hematopoietic stem cells could lead to novel in utero therapies for blood cell disorders and enzymatic deficiencies. Here we describe a new assay to measure rapidly the effects of cytokines on the differentiation or expansion of primitive progenitors and stem cells found among CD38(-)CD34(++) lineage() cells isolated from human midgestation liver. Importantly, conditions that otherwise supported the expansion of clonogenic progenitors reduced their proliferative capacity. A combination of megakaryocyte growth and development factor and granulocyte-macrophage colony-stimulating factor maintained proliferative potential while also yielding an intermediate level of progenitor expansion. Retroviral transduction was achieved using Moloney murine leukemia virus-based vectors. Freshly isolated candidate stem cells could be transduced at almost 17% efficiency by a 1-h exposure to virus with centrifugation to aid transduction. This was increased to a mean 35.5% transduction efficiency after 1 day of culture. Additionally, the transduction efficiency of candidate stem cells isolated from fetal placental blood was 33.0%. These findings encourage further investigation into the feasibility of ex utero gene therapy whereby fetal cells are isolated from the circulation, transduced, and expanded ex utero before being returned to the fetus.
Collapse
Affiliation(s)
- Marcus O Muench
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | |
Collapse
|
9
|
Suskind DL, Muench MO. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J Hepatol 2004; 40:261-8. [PMID: 14739097 DOI: 10.1016/j.jhep.2003.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIMS The hematopoietic and hepatic systems are intertwined in the liver during fetal life. Cells expressing the hematopoietic stem cell marker CD34 and cytokeratin 7/8 (CK7/8) are hypothesized to be common stem cells for the hematopoietic and hepatic systems. Our aim was to determine if human fetal liver cells expressing CD34 and CK7/8 represent a common stem cell for both the hematopoietic and hepatic systems. METHODS CD34+CK7/8+ cells from midgestation livers were analyzed for the expression of various markers by flow cytometry and isolated based on their expression of CD34, nerve growth factor receptor (NGFR) and lack of CD45 expression. CD34+CD38- hematopoietic stem cells were also isolated and cultured in the presence of various hepatopoietins. RESULTS CD34+CK7/8+ cells comprised 3.4-8.5% of the erythrocyte-depleted liver. CD34+CK7/8+ cells had unique light-scatter properties compared to hematopoietic precursors and did not express most markers associated with hematopoietic cells. They did stain with CD13, CD59, NGFR, desmin and alpha-smooth muscle actin. In culture, these cells had a stellate appearance. Cultured hematopoietic stem cells failed to generate hepatocytes. CONCLUSIONS CD34+CK7/8+ cells are not common stem cells but rather appear to be hepatic stellate cells. A link between the hematopoietic and hepatic systems during fetal life requires further investigation.
Collapse
Affiliation(s)
- David L Suskind
- Department of Pediatrics, University of California, San Francisco, CA 94143-0793, USA
| | | |
Collapse
|
10
|
Rutella S, Bonanno G, Marone M, De Ritis D, Mariotti A, Voso MT, Scambia G, Mancuso S, Leone G, Pierelli L. Identification of a novel subpopulation of human cord blood CD34-CD133-CD7-CD45+lineage- cells capable of lymphoid/NK cell differentiation after in vitro exposure to IL-15. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2977-88. [PMID: 12960322 DOI: 10.4049/jimmunol.171.6.2977] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hemopoietic stem cell (HSC) compartment encompasses cell subsets with heterogeneous proliferative and developmental potential. Numerous CD34(-) cell subsets that might reside at an earlier stage of differentiation than CD34(+) HSCs have been described and characterized within human umbilical cord blood (UCB). We identified a novel subpopulation of CD34(-)CD133(-)CD7(-)CD45(dim)lineage (lin)(-) HSCs contained within human UCB that were endowed with low but measurable extended long-term culture-initiating cell activity. Exposure of CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs to stem cell factor preserved cell viability and was associated with the following: 1) concordant expression of the stem cell-associated Ags CD34 and CD133, 2) generation of CFU-granulocyte-macrophage, burst-forming unit erythroid, and megakaryocytic aggregates, 3) significant extended long-term culture-initiating cell activity, and 4) up-regulation of mRNA signals for myeloperoxidase. At variance with CD34(+)lin(-) cells, CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs maintained with IL-15, but not with IL-2 or IL-7, proliferated vigorously and differentiated into a homogeneous population of CD7(+)CD45(bright)CD25(+)CD44(+) lymphoid progenitors with high expression of the T cell-associated transcription factor GATA-3. Although they harbored nonclonally rearranged TCRgamma genes, IL-15-primed CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs failed to achieve full maturation, as manifested in their CD3(-)TCRalphabeta(-)gammadelta(-) phenotype. Conversely, culture on stromal cells supplemented with IL-15 was associated with the acquisition of phenotypic and functional features of NK cells. Collectively, CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs from human UCB displayed an exquisite sensitivity to IL-15 and differentiated into lymphoid/NK cells. Whether the transplantation of CD34(-)lin(-) HSCs possessing T/NK cell differentiation potential may impact on immunological reconstitution and control of minimal residual disease after HSC transplantation for autoimmune or malignant diseases remains to be determined.
Collapse
MESH Headings
- AC133 Antigen
- Antigens, CD
- Antigens, CD34/biosynthesis
- Antigens, CD34/metabolism
- Antigens, CD7/metabolism
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Cell Separation/methods
- Cells, Cultured
- Culture Media, Conditioned
- Cytotoxicity, Immunologic
- Fetal Blood/cytology
- Fetal Blood/immunology
- Fetal Blood/metabolism
- Glycoproteins/biosynthesis
- Glycoproteins/metabolism
- Growth Substances/pharmacology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Humans
- Immunophenotyping
- Interleukin-15/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocyte Common Antigens/biosynthesis
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Peptides/metabolism
- Stem Cell Factor/pharmacology
- Stromal Cells/immunology
Collapse
Affiliation(s)
- Sergio Rutella
- Department of Hematology, Laboratory of Immunology, Catholic University Medical School, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Muench MO, Suskind DL, Bárcena A. Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver. Biol Proced Online 2002; 4:10-23. [PMID: 12734573 PMCID: PMC145552 DOI: 10.1251/bpo29] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 05/16/2002] [Accepted: 05/27/2002] [Indexed: 12/04/2022] Open
Abstract
The study of hematopoietic stem cells (HSCs) and the process by which they differentiate into committed progenitors has been hampered by the lack of in vitro clonal assays that can support erythroid, myeloid and lymphoid differentiation. We describe a method for the isolation from human fetal liver of highly purified candidate HSCs and progenitors based on the phenotypes CD38(-)CD34(++) and CD38(+)CD34(++), respectively. We also describe a method for the growth of colony-forming cells (CFCs) from these cell populations, under defined culture conditions, that supports the differentiation of erythroid, CD14/CD15(+) myeloid, CD1a(+) dendritic cell and CD56(+) NK cell lineages. Flow cytometric analyses of individual colonies demonstrate that CFCs with erythroid, myeloid and lymphoid potential are distributed among both the CD38(-) and CD38(+) populations of CD34(++) progenitors.
Collapse
Affiliation(s)
- Marcus O Muench
- Department of Laboratory Medicine, University of California at San Francisco. 3rd & Parnassus Ave., Room U-440; San Francisco, CA 94143-0793.
| | | | | |
Collapse
|