1
|
Rump A, Ratas K, Lepasepp TK, Suurväli J, Smolander OP, Gross-Paju K, Toomsoo T, Kanellopoulos J, Rüütel Boudinot S. Sex-dependent expression levels of VAV1 and P2X7 in PBMC of multiple sclerosis patients. Scand J Immunol 2023; 98:e13283. [PMID: 38441379 DOI: 10.1111/sji.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/21/2023] [Accepted: 05/01/2023] [Indexed: 03/07/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disorder of the central nervous system and the leading cause of progressive neurological disability in young adults. It decreases the patient's lifespan by about 10 years and affects women more than men. No medication entirely restricts or reverses neurological degradation. However, early diagnosis and treatment increase the possibility of a better outcome. To identify new MS biomarkers, we tested the expression of six potential markers (P2X4, P2X7, CXCR4, RGS1, RGS16 and VAV1) using qPCR in peripheral blood mononuclear cells (PBMC) of MS patients treated with interferon β (IFNβ), with glatiramer acetate (GA) or untreated. We showed that P2X7 and VAV1 are significantly induced in MS patients. In contrast, the expression of P2X4, CXCR4, RGS1 and RGS16 was not significantly modified by MS in PBMC. P2X7 and VAV1 are essentially induced in female patients, suggesting these markers are connected to sex-specific mechanisms. Strikingly, VAV1 expression is higher in healthy women than healthy men and IFNβ treatment of MS reduced VAV1 expression in female MS patients while it up-regulated VAV1 in male MS patients. Our data point to the differential, sex-dependent value of MS markers and treatment effects. Although rgs16 expression in PBMC was not a valid MS marker in patients, the strong upregulation of P2X4 and P2X7 induced in the spinal cord of WT mice by EAE was abrogated in rgs16KO mice suggesting that rgs16 is required for P2X4 and P2X7 induction by neurological diseases.
Collapse
Affiliation(s)
- Airi Rump
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristel Ratas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Synlab, Tallinn, Estonia
| | - Tuuli Katarina Lepasepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Suurväli
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Katrin Gross-Paju
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
- West-Tallinn Central Hospital, Tallinn, Estonia
| | - Toomas Toomsoo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Confido Medical Center, Tallinn, Estonia
| | - Jean Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, France
| | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
2
|
Abstract
BACKGROUND Ulcerative colitis is a chronic and progressive inflammatory disorder. The regulator of the G-protein signaling (RGS) is involved in the pathogenesis of several immune system disorders. RGS16, a member of the RGS protein superfamily, has been shown to play critical roles in several immune system-related diseases. However, the roles of RGS16 in ulcerative colitis remain to be elucidated. METHODS We analyzed the expression of RGS16 in peripheral blood mononuclear cells (PBMCs) and inflamed mucosa of ulcerative colitis patients using quantitative reverse transcription-PCR, western blotting and immunohistochemistry. We performed Spearman's correlation to analyze the correlation between RGS16 expression and the ulcerative colitis endoscopic index of severity (UCEIS), Mayo index, erythrocyte sedimentation rate (ESR) and serum tumor necrosis factor alpha (TNF-a) and IL-17A levels. Further, PBMCs were stimulated with inflammatory cytokines in vitro . RESULTS RGS16 expression significantly increased in the colonic mucosa and PBMCs from patients with ulcerative colitis and significantly correlated with the Mayo index, UCEIS, ESR and serum TNF-α and IL-17A levels. TNF-α upregulated RGS16 expression in PBMCs in a dose- and time-dependent manner via the nuclear factor kappa beta (NF-kB) signaling pathway. Moreover, anti-TNF treatment with infliximab significantly decreased RGS16 expression in PBMCs and intestinal mucosa of patients with ulcerative colitis. CONCLUSION Our study revealed a novel mechanism by which RGS16 expression in ulcerative colitis is positively correlated with disease activity. Thus, RGS16 might serve as a potential therapeutic marker for the treatment of ulcerative colitis.
Collapse
|
3
|
Tian M, Ma Y, Li T, Wu N, Li J, Jia H, Yan M, Wang W, Bian H, Tan X, Qi J. Functions of regulators of G protein signaling 16 in immunity, inflammation, and other diseases. Front Mol Biosci 2022; 9:962321. [PMID: 36120550 PMCID: PMC9478547 DOI: 10.3389/fmolb.2022.962321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Ma
- Zibo Central Hospital, Zibo, China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqi Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| |
Collapse
|
4
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
5
|
Huang P, Tang L, Zhang L, Ren Y, Peng H, Xiao Y, Xu J, Mao D, Liu L, Liu L. Identification of Biomarkers Associated With CD4+ T-Cell Infiltration With Gene Coexpression Network in Dermatomyositis. Front Immunol 2022; 13:854848. [PMID: 35711463 PMCID: PMC9196312 DOI: 10.3389/fimmu.2022.854848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background Dermatomyositis is an autoimmune disease characterized by damage to the skin and muscles. CD4+ T cells are of crucial importance in the occurrence and development of dermatomyositis (DM). However, there are few bioinformatics studies on potential pathogenic genes and immune cell infiltration of DM. Therefore, this study intended to explore CD4+ T-cell infiltration–associated key genes in DM and construct a new model to predict the level of CD4+ T-cell infiltration in DM. Methods GSE46239, GSE142807, GSE1551, and GSE193276 datasets were downloaded. The WGCNA and CIBERSORT algorithms were performed to identify the most correlated gene module with CD4+ T cells. Matascape was used for GO enrichment and KEGG pathway analysis of the key gene module. LASSO regression analysis was used to identify the key genes and construct the prediction model. The correlation between the key genes and CD4+ T-cell infiltration was investigated. GSEA was performed to research the underlying signaling pathways of the key genes. The key gene-correlated transcription factors were identified through the RcisTarget and Gene-motif rankings databases. The miRcode and DIANA-LncBase databases were used to build the lncRNA-miRNA-mRNA network. Results In the brown module, 5 key genes (chromosome 1 open reading frame 106 (C1orf106), component of oligomeric Golgi complex 8 (COG8), envoplakin (EVPL), GTPases of immunity-associated protein family member 6 (GIMAP6), and interferon-alpha inducible protein 6 (IFI6)) highly associated with CD4+ T-cell infiltration were identified. The prediction model was constructed and showed better predictive performance in the training set, and this satisfactory model performance was validated in another skin biopsy dataset and a muscle biopsy dataset. The expression levels of the key genes promoted the CD4+ T-cell infiltration. GSEA results revealed that the key genes were remarkably enriched in many immunity-associated pathways, such as JAK/STAT signaling pathway. The cisbp_M2205, transcription factor-binding site, was enriched in C1orf106, EVPL, and IF16. Finally, 3,835 lncRNAs and 52 miRNAs significantly correlated with key genes were used to build a ceRNA network. Conclusion The C1orf106, COG8, EVPL, GIMAP6, and IFI6 genes are associated with CD4+ T-cell infiltration. The prediction model constructed based on the 5 key genes may better predict the level of CD4+ T-cell infiltration in damaged muscle and lesional skin of DM. These key genes could be recognized as potential biomarkers and immunotherapeutic targets of DM.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| |
Collapse
|
6
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Abd El-Aleem SA, Saber EA, Aziz NM, El-Sherif H, Abdelraof AM, Djouhri L. Follicular dendritic cells. J Cell Physiol 2021; 237:2019-2033. [PMID: 34918359 DOI: 10.1002/jcp.30662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022]
Abstract
Follicular dendritic cells (FDCs) are unique accessory immune cells that contribute to the regulation of humoral immunity. They are multitasker cells essential for the organization and maintenance of the lymphoid architecture, induction of germinal center reaction, production of B memory cells, and protection from autoimmune disorders. They perform their activities through both antigen-driven and chemical signaling to B cells. FDCs play a crucial role in the physiological regulation of the immune response. Dis-regulation of this immune response results when FDCs retain antigens for years. This provides a constant antigenic stimulation for B cells resulting in the development of immune disorders. Antigen trapped on FDCs is resistant to therapeutic intervention causing chronicity and recurrences. Beyond their physiological immunoregulatory functions, FDCs are involved in the pathogenesis of several immune-related disorders including HIV/AIDS, prion diseases, chronic inflammatory, and autoimmune disorders. FDCs have also been recently implicated in rare neoplasms of lymphoid and hematopoietic tissues. Understanding FDC biology is essential for better control of humoral immunity and opens the gate for therapeutic management of FDC-mediated immune disorders. Thus, the biology of FDCs has become a hot research area in the last couple of decades. In this review, we aim to provide a comprehensive overview of FDCs and their role in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Minia University, Minya, Egypt.,Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Neven M Aziz
- Department of Pharmacy, Deraya University, New Minia City, Egypt.,Department of Physiology, Minia Faculty of Medicine, Minia, Egypt
| | - Hani El-Sherif
- Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Asmaa M Abdelraof
- Public Health, Community, Environmental and Occupational Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Acquisition of optimal TFH cell function is defined by specific molecular, positional, and TCR dynamic signatures. Proc Natl Acad Sci U S A 2021; 118:2016855118. [PMID: 33903232 DOI: 10.1073/pnas.2016855118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of follicular helper CD4 T (TFH) cells is a dynamic process resulting in a heterogenous pool of TFH subsets. However, the cellular and molecular determinants of this heterogeneity and the possible mechanistic links between them is not clear. We found that human TFH differentiation is associated with significant changes in phenotypic, chemokine, functional, metabolic and transcriptional profile. Furthermore, this differentiation was associated with distinct positioning to follicular proliferating B cells. Single-cell T cell receptor (TCR) clonotype analysis indicated the transitioning toward PD-1hiCD57hi phenotype. Furthermore, the differentiation of TFH cells was associated with significant reduction in TCR level and drastic changes in immunological synapse formation. TFH synapse lacks a tight cSMAC (central supra molecular activation Cluster) but displays the TCR in peripheral microclusters, which are potentially advantageous in the ability of germinal center (GC) B cells to receive necessary help. Our data reveal significant aspects of human TFH heterogeneity and suggest that the PD-1hiCD57hi TFH cells, in particular, are endowed with distinctive programming and spatial positioning for optimal GC B cell help.
Collapse
|
9
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
10
|
Huang R, Li G, Zhao Z, Zeng F, Zhang K, Liu Y, Wang K, Hu H. RGS16 promotes glioma progression and serves as a prognostic factor. CNS Neurosci Ther 2020; 26:791-803. [PMID: 32319728 PMCID: PMC7366748 DOI: 10.1111/cns.13382] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background RGS protein family members have recently became new potentially promising therapeutic targets in many cancers. However, as a key member of RGS family, RGS16 has seldom been studied in glioma. The present study was designed to investigate the prognostic value and biological function of RGS16 based on large‐scale databases and functional assays in vitro. Methods Here, we performed comprehensive analysis for the expression characteristic of RGS16 in Chinese Glioma Genome Atlas (CGGA) microarray database with 301 patients and validated in The Cancer Genome Atlas (TCGA) microarray and RNA sequencing database. Student's t‐test, one‐way ANOVA test and long‐rank test were used to assess differences between groups. Kaplan‐Meier survival, univariate and multivariate Cox analysis and ROC curve were used to estimate the survival distributions. Biological implication of abnormal expression of RGS16 in glioma was also explored. Functional analysis of RGS16 was performed in several glioblastoma (GBM) cell lines. R language and SPSS were used for statistical analysis and graphical work. Results We found that the expression of RGS16 was positively related to the grade of glioma. High level of RGS16 commonly gathered in glioma of mesenchymal subtype and wild‐type IDH1. Moreover, higher expression level of RGS16 was found to be significantly correlated with poor prognosis. The univariate and multivariate Cox regression analysis and ROC curve showed that RGS16 was an independent prognostic factor for glioma patients. Gene ontology analysis, gene set enrichment analysis, and gene set variation analysis suggested that the overexpression of RGS16 tightly related to cell proliferation, migration, epithelial‐mesenchymal transition (EMT), immune and inflammatory response of glioma. Knockdown of RGS16 in glioma cell lines also showed that RGS16 promoted the malignant progress of glioma cell lines. Conclusions RGS16 plays an important role in glioma progression and serves as an independent prognostic factor, especially in GBM patients.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Yanwei Liu
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Gamma Knife Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| |
Collapse
|
11
|
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol 2019; 65:176-188. [PMID: 31874281 DOI: 10.1016/j.semcancer.2019.12.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to β-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.
Collapse
Affiliation(s)
- Sara K Daniel
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | - Y David Seo
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | | |
Collapse
|
12
|
Selheim F, Aasebø E, Ribas C, Aragay AM. An Overview on G Protein-coupled Receptor-induced Signal Transduction in Acute Myeloid Leukemia. Curr Med Chem 2019; 26:5293-5316. [PMID: 31032748 DOI: 10.2174/0929867326666190429153247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by uncontrolled proliferation of precursor myeloid-lineage cells in the bone marrow. AML is also characterized by patients with poor long-term survival outcomes due to relapse. Many efforts have been made to understand the biological heterogeneity of AML and the challenges to develop new therapies are therefore enormous. G Protein-coupled Receptors (GPCRs) are a large attractive drug-targeted family of transmembrane proteins, and aberrant GPCR expression and GPCR-mediated signaling have been implicated in leukemogenesis of AML. This review aims to identify the molecular players of GPCR signaling, focusing on the hematopoietic system, which are involved in AML to help developing novel drug targets and therapeutic strategies. METHODS We undertook an exhaustive and structured search of bibliographic databases for research focusing on GPCR, GPCR signaling and expression in AML. RESULTS AND CONCLUSION Many scientific reports were found with compelling evidence for the involvement of aberrant GPCR expression and perturbed GPCR-mediated signaling in the development of AML. The comprehensive analysis of GPCR in AML provides potential clinical biomarkers for prognostication, disease monitoring and therapeutic guidance. It will also help to provide marker panels for monitoring in AML. We conclude that GPCR-mediated signaling is contributing to leukemogenesis of AML, and postulate that mass spectrometrybased protein profiling of primary AML cells will accelerate the discovery of potential GPCR related biomarkers for AML.
Collapse
Affiliation(s)
- Frode Selheim
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain
| | - Anna M Aragay
- Departamento de Biologia Celular. Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Spanish National Research Council (CSIC), Baldiri i Reixac, 15, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Chisolm DA, Cheng W, Colburn SA, Silva-Sanchez A, Meza-Perez S, Randall TD, Weinmann AS. Defining Genetic Variation in Widely Used Congenic and Backcrossed Mouse Models Reveals Varied Regulation of Genes Important for Immune Responses. Immunity 2019; 51:155-168.e5. [PMID: 31248780 DOI: 10.1016/j.immuni.2019.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/24/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
Abstract
Genetic variation influences how the genome is interpreted in individuals and in mouse strains used to model immune responses. We developed approaches to utilize next-generation sequencing datasets to identify sequence variation in genes and enhancer elements in congenic and backcross mouse models. We defined genetic variation in the widely used B6-CD45.2 and B6.SJL-CD45.1 congenic model, identifying substantial differences in SJL genetic content retained in B6.SJL-CD45.1 strains on the basis of the vendor source of the mice. Genes encoding PD-1, CD62L, Bcl-2, cathepsin E, and Cxcr4 were within SJL genetic content in at least one vendor source of B6.SJL-CD45.1 mice. SJL genetic content affected enhancer elements, gene regulation, protein expression, and amino acid content in CD4+ T helper 1 cells, and mice infected with influenza showed reduced expression of Cxcr4 on B6.SJL-CD45.1 T follicular helper cells. These findings provide information on experimental variables and aid in creating approaches that account for genetic variables.
Collapse
Affiliation(s)
- Danielle A Chisolm
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wayne Cheng
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shelby A Colburn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Poultsidi A, Dimopoulos Y, He TF, Chavakis T, Saloustros E, Lee PP, Petrovas C. Lymph Node Cellular Dynamics in Cancer and HIV: What Can We Learn for the Follicular CD4 (Tfh) Cells? Front Immunol 2018; 9:2233. [PMID: 30319664 PMCID: PMC6170630 DOI: 10.3389/fimmu.2018.02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Lymph nodes (LNs) are central in the generation of adaptive immune responses. Follicular helper CD4 T (Tfh) cells, a highly differentiated CD4 population, provide critical help for the development of antigen-specific B cell responses within the germinal center. Throughout the past decade, numerous studies have revealed the important role of Tfh cells in Human Immunodeficiency Virus (HIV) pathogenesis as well as in the development of neutralizing antibodies post-infection and post-vaccination. It has also been established that tumors influence various immune cell subsets not only in their proximity, but also in draining lymph nodes. The role of local or tumor associated lymph node Tfh cells in disease progression is emerging. Comparative studies of Tfh cells in chronic infections and cancer could therefore provide novel information with regards to their differentiation plasticity and to the mechanisms regulating their development.
Collapse
Affiliation(s)
- Antigoni Poultsidi
- Department of Surgery, Medical School, University of Thessaly, Larissa, Greece
| | - Yiannis Dimopoulos
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Ting-Fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Emmanouil Saloustros
- Department of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
16
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
17
|
Dave RS, Sharma RK, Muir RR, Haddad E, Gumber S, Villinger F, Nehra AP, Khan ZK, Wigdahl B, Ansari AA, Byrareddy SN, Jain P. FDC:TFH Interactions within Cervical Lymph Nodes of SIV-Infected Rhesus Macaques. J Neuroimmune Pharmacol 2018; 13:204-218. [PMID: 29288344 PMCID: PMC5757373 DOI: 10.1007/s11481-017-9775-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022]
Abstract
Cerebrospinal fluid (CSF) drains via the lymphatic drainage pathway. This lymphatic pathway connects the central nervous system (CNS) to the cervical lymph node (CLN). As the CSF drains to CLN via the dural and nasal lymphatics, T cells and antigen presenting cells pass along the channels from the subarachnoid space through the cribriform plate. Human immunodeficiency virus (HIV) may also egress from the CNS along this pathway. As a result, HIV egressing from the CNS may accumulate within the CLN. Towards this objective, we analyzed CLNs isolated from rhesus macaques that were chronically-infected with simian immunodeficiency virus (SIV). We detected significant accumulation of SIV within the CLNs. SIV virion trapping was observed on follicular dendritic cells (FDCs) localized within the follicular regions of CLNs. In addition, SIV antigens formed immune complexes when FDCs interacted with B cells within the germinal centers. Subsequent interaction of these B cells with CD4+ T follicular helper cells (TFHs) resulted in infection of the latter. Of note, 73% to 90% of the TFHs cells within CLNs were positive for SIV p27 antigen. As such, it appears that not only do the FDCs retain SIV they also transmit them (via B cells) to TFHs within these CLNs. This interaction results in infection of TFHs in the CLNs. Based on these observations, we infer that FDCs within the CLNs have a novel role in SIV entrapment with implications for viral trafficking.
Collapse
Affiliation(s)
- Rajnish S Dave
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ravi K Sharma
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
- Advanced Eye Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Roshell R Muir
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias Haddad
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sanjeev Gumber
- Department of Pathology & Laboratory Medicine, School of Medicine and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Artinder P Nehra
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
| | - Aftab A Ansari
- Department of Pathology & Laboratory Medicine, School of Medicine and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA.
| |
Collapse
|
18
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
19
|
Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci MR, De Vito R, Tucci FM, McDermott AB, Narpala S, Rossi P, Koup RA, Palma P, Petrovas C. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. THE JOURNAL OF IMMUNOLOGY 2017; 200:538-550. [PMID: 29237774 DOI: 10.4049/jimmunol.1701312] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023]
Abstract
Generation of Ag-specific humoral responses requires the orchestrated development and function of highly specialized immune cells in secondary lymphoid organs. We used a multiparametric approach combining flow cytometry, confocal microscopy, and histocytometry to analyze, for the first time to our knowledge in children, tonsils from seasonal influenza-vaccinated children. We used these novel imaging assays to address the mucosal immune dynamics in tonsils investigating the spatial positioning, frequency, and phenotype of immune cells after vaccination. Vaccination was associated with a significantly higher frequency of follicular helper CD4 T cells compared with the unvaccinated control group. The imaging analysis revealed that potential suppressor (FOXP3hi) CD4 T cells are mainly located in extrafollicular areas. Furthermore, a significantly reduced frequency of both follicular and extrafollicular FOXP3hi CD4 T cells was found in the vaccine group compared with the control group. Levels of circulating CXCL13 were higher in those vaccinated compared with controls, mirroring an increased germinal center reactivity in the tonsils. Notably, a strong correlation was found between the frequency of tonsillar T follicular helper cells and tonsillar Ag-specific Ab-secreting cells. These data demonstrate that influenza vaccination promotes the prevalence of relevant immune cells in tonsillar follicles and support the use of tonsils as lymphoid sites for the study of germinal center reactions after vaccination in children.
Collapse
Affiliation(s)
- Donato Amodio
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Nicola Cotugno
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giulia Macchiarulo
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Salvatore Rocca
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yiannis Dimopoulos
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Maria Rita Castrucci
- National Influenza Centre, Department of Infectious, Parasitic and Immune-Mediated Diseases, National Institute of Health, 00161 Rome, Italy
| | - Rita De Vito
- Histopathology Unit, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy
| | - Filippo M Tucci
- Unit of Head and Neck Surgery, Department of Surgery, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy
| | - Adrian B McDermott
- Vaccine Immunogenicity Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sandeep Narpala
- Vaccine Immunogenicity Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Paolo Rossi
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
20
|
Ochando J, Braza MS. T follicular helper cells: a potential therapeutic target in follicular lymphoma. Oncotarget 2017; 8:112116-112131. [PMID: 29340116 PMCID: PMC5762384 DOI: 10.18632/oncotarget.22788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Follicular lymphoma (FL), the most common indolent B-cell non-Hodgkin lymphoma (B-NHL), is a germinal center (GC)-derived lymphoma. The mechanisms underlying B-cell differentiation/maturation in GCs could be also involved in their malignant transformation. Moreover, the non-malignant cell composition and architecture of the tumor microenvironment can influence FL development and outcome. Here, we review recent research advances on CD4 helper T cells in FL that highlight the pivotal role of T follicular helper (TFH) cells in a complex multicellular system where they interact with B cells during GC dynamics. After describing the mechanism of FL lymphomagenesis, we discuss the emerging evidence about TFH cell enrichment and involvement in FL tumorigenesis and in B-T cell interaction, TFH regulation by T follicular regulatory cells (TFR) and its potential effect on FL. Then, we provide an overview on the flexible interplay between the different CD4 T-cell subtypes and how this may be predicted in normal and pathologic contexts, according to the cell epigenetic state. Finally, we highlight the importance of targeting TFH cells in the clinic, summarize the main outstanding questions about TFH and TFR cells in FL, and describe strategies to potentiate FL therapy by taking into account TFH cells.
Collapse
Affiliation(s)
- Jordi Ochando
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mounia S Braza
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
22
|
Xie Z, Chan EC, Druey KM. R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity. AAPS JOURNAL 2015; 18:294-304. [PMID: 26597290 DOI: 10.1208/s12248-015-9847-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) have important functions in both innate and adaptive immunity, with the capacity to bridge interactions between the two arms of the host responses to pathogens through direct recognition of secreted microbial products or the by-products of host cells damaged by pathogen exposure. In the mid-1990s, a large group of intracellular proteins was discovered, the regulator of G protein signaling (RGS) family, whose main, but not exclusive, function appears to be to constrain the intensity and duration of GPCR signaling. The R4/B subfamily--the focus of this review--includes RGS1-5, 8, 13, 16, 18, and 21, which are the smallest RGS proteins in size, with the exception of RGS3. Prominent roles in the trafficking of B and T lymphocytes and macrophages have been described for RGS1, RGS13, and RGS16, while RGS18 appears to control platelet and osteoclast functions. Additional G protein independent functions of RGS13 have been uncovered in gene expression in B lymphocytes and mast cell-mediated allergic reactions. In this review, we discuss potential physiological roles of this RGS protein subfamily, primarily in leukocytes having central roles in immune and inflammatory responses. We also discuss approaches to target RGS proteins therapeutically, which represents a virtually untapped strategy to combat exaggerated immune responses leading to inflammation.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Eunice C Chan
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
23
|
Stone EL, Pepper M, Katayama CD, Kerdiles YM, Lai CY, Emslie E, Lin YC, Yang E, Goldrath AW, Li MO, Cantrell DA, Hedrick SM. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 2015; 42:239-251. [PMID: 25692700 PMCID: PMC4334393 DOI: 10.1016/j.immuni.2015.01.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/13/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
T follicular helper (Tfh) cells are essential in the induction of high-affinity, class-switched antibodies. The differentiation of Tfh cells is a multi-step process that depends upon the co-receptor ICOS and the activation of phosphoinositide-3 kinase leading to the expression of key Tfh cell genes. We report that ICOS signaling inactivates the transcription factor FOXO1, and a Foxo1 genetic deletion allowed for generation of Tfh cells with reduced dependence on ICOS ligand. Conversely, enforced nuclear localization of FOXO1 inhibited Tfh cell development even though ICOS was overexpressed. FOXO1 regulated Tfh cell differentiation through a broad program of gene expression exemplified by its negative regulation of Bcl6. Final differentiation to germinal center Tfh cells (GC-Tfh) was instead FOXO1 dependent as the Foxo1−/− GC-Tfh cell population was substantially reduced. We propose that ICOS signaling transiently inactivates FOXO1 to initiate a Tfh cell contingency that is completed in a FOXO1-dependent manner. ICOS signaling transiently inactivates FOXO1 to generate Tfh cells FOXO1 regulates a Tfh cell gene program exemplified by negative regulation of Bcl6 Enforced nuclear localization of FOXO1 prevents Tfh cell differentiation FOXO1 promotes final GC-Tfh cell differentiation
Collapse
Affiliation(s)
- Erica L Stone
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| | - Carol D Katayama
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Yann M Kerdiles
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Chen-Yen Lai
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Elizabeth Emslie
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Yin C Lin
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Edward Yang
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ananda W Goldrath
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Doreen A Cantrell
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Stephen M Hedrick
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA; Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA.
| |
Collapse
|
24
|
Suan D, Nguyen A, Moran I, Bourne K, Hermes JR, Arshi M, Hampton HR, Tomura M, Miwa Y, Kelleher AD, Kaplan W, Deenick EK, Tangye SG, Brink R, Chtanova T, Phan TG. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 2015; 42:704-18. [PMID: 25840682 DOI: 10.1016/j.immuni.2015.03.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
B helper follicular T (Tfh) cells are critical for long-term humoral immunity. However, it remains unclear how these cells are recruited and contribute to secondary immune responses. Here we show that primary Tfh cells segregate into follicular mantle (FM) and germinal center (GC) subpopulations that display distinct gene expression signatures. Restriction of the primary Tfh cell subpopulation in the GC was mediated by downregulation of chemotactic receptor EBI2. Following collapse of the GC, memory T cells persisted in the outer follicle where they scanned CD169(+) subcapsular sinus macrophages. Reactivation and intrafollicular expansion of these follicular memory T cells in the subcapsular region was followed by their extrafollicular dissemination via the lymphatic flow. These data suggest that Tfh cells integrate their antigen-experience history to focus T cell help within the GC during primary responses but act rapidly to provide systemic T cell help after re-exposure to the antigen.
Collapse
Affiliation(s)
- Dan Suan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Akira Nguyen
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Imogen Moran
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Katherine Bourne
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Jana R Hermes
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Mehreen Arshi
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Centre for Applied Medical Research, 405 Liverpool Street, Darlinghurst, NSW 2010 Australia
| | - Henry R Hampton
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Michio Tomura
- Kyoto University Graduate School of Medicine, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Miwa
- University of Tsukuba, Ibaraki Prefecture, Tsukuba 305-8572, Japan
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, 405 Liverpool Street, Darlinghurst, NSW 2010 Australia
| | - Warren Kaplan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Tatyana Chtanova
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, 390 Victoria Street, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
25
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
26
|
Suurväli J, Pahtma M, Saar R, Paalme V, Nutt A, Tiivel T, Saaremäe M, Fitting C, Cavaillon J, Rüütel Boudinot S. RGS16 Restricts the Pro-Inflammatory Response of Monocytes. Scand J Immunol 2014; 81:23-30. [DOI: 10.1111/sji.12250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/26/2014] [Indexed: 02/02/2023]
Affiliation(s)
- J. Suurväli
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - M. Pahtma
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - R. Saar
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - V. Paalme
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - A. Nutt
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - T. Tiivel
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - M. Saaremäe
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - C. Fitting
- Unité Cytokines & Inflammation; Institut Pasteur; Paris France
| | - J.M. Cavaillon
- Unité Cytokines & Inflammation; Institut Pasteur; Paris France
| | - S. Rüütel Boudinot
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
27
|
Choi DS, Stark DJ, Raphael RM, Wen J, Su J, Zhou X, Chang CC, Zu Y. SDF-1α stiffens myeloma bone marrow mesenchymal stromal cells through the activation of RhoA-ROCK-Myosin II. Int J Cancer 2014; 136:E219-29. [PMID: 25137150 DOI: 10.1002/ijc.29145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 07/14/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022]
Abstract
Multiple myeloma (MM) is a B lymphocyte malignancy that remains incurable despite extensive research efforts. This is due, in part, to frequent disease recurrences associated with the persistence of myeloma cancer stem cells (mCSCs). Bone marrow mesenchymal stromal cells (BMSCs) play critical roles in supporting mCSCs through genetic or biochemical alterations. Previously, we identified mechanical distinctions between BMSCs isolated from MM patients (mBMSCs) and those present in the BM of healthy individuals (nBMSCs). These properties of mBMSC contributed to their ability to preferentially support mCSCs. To further illustrate mechanisms underlying the differences between mBMSCs and nBMSCs, here we report that (i) mBMSCs express an abnormal, constitutively high level of phosphorylated Myosin II, which leads to stiffer membrane mechanics, (ii) mBMSCs are more sensitive to SDF-1α-induced activation of MYL2 through the G(i./o)-PI3K-RhoA-ROCK-Myosin II signaling pathway, affecting Young's modulus in BMSCs and (iii) activated Myosin II confers increased cell contractile potential, leading to enhanced collagen matrix remodeling and promoting the cell-cell interaction between mCSCs and mBMSCs. Together, our findings suggest that interfering with SDF-1α signaling may serve as a new therapeutic approach for eliminating mCSCs by disrupting their interaction with mBMSCs.
Collapse
Affiliation(s)
- Dong Soon Choi
- Methodist Cancer Center, Houston Methodist Hospital, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Okoye AA, Picker LJ. CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 2014; 254:54-64. [PMID: 23772614 DOI: 10.1111/imr.12066] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hallmark of acquired immunodeficiency syndrome (AIDS) pathogenesis is a progressive depletion of CD4(+) T-cell populations in close association with progressive impairment of cellular immunity and increasing susceptibility to opportunistic infections (OI). Disease progression in untreated human immunodeficiency virus (HIV) infection can take many years, and it was originally hypothesized to be a consequence of slow, viral-mediated CD4(+) T-cell destruction. However, massive CD4(+) memory T-cell destruction is now known to occur quite early in infection, almost always without overt immunodeficiency. In most individuals, this initial destruction is countered by CD4(+) memory T-cell regeneration that preserves CD4(+) T-cell numbers and functions above the threshold associated with overt immunodeficiency. This regeneration, which occurs in the setting of chronic immune activation and immune dysregulation does not, however, restore all functionally important CD4(+) T-cell populations and is not stable over the long term. Ultimately, CD4(+) memory T-cell homeostasis fails and critical effector populations decline below the level necessary to prevent OI. Thus, the onset of overt immune deficiency appears to be intimately linked with CD4(+) memory T-cell dynamics and reflects the complex interplay of direct viral cytopathogenicity and the indirect effects of persistent immune activation on CD4(+) memory T-cell proliferation, differentiation, and survival.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | |
Collapse
|
29
|
Williams JW, Yau D, Sethakorn N, Kach J, Reed EB, Moore TV, Cannon J, Jin X, Xing H, Muslin AJ, Sperling AI, Dulin NO. RGS3 controls T lymphocyte migration in a model of Th2-mediated airway inflammation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L693-701. [PMID: 24077945 DOI: 10.1152/ajplung.00214.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3(ΔRGS)) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3(ΔRGS) mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3(ΔRGS) mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3(ΔRGS), demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3(ΔRGS) T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.
Collapse
Affiliation(s)
- Jesse W Williams
- Section of Pulmonary and Critical Care, Dept. of Medicine, The Univ. of Chicago, 5841 S. Maryland Ave., MC6076, Rm. M-648, Chicago, IL 60637.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ding Y, Li J, Wu Q, Yang P, Luo B, Xie S, Druey KM, Zajac AJ, Hsu HC, Mountz JD. IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1614-24. [PMID: 23858031 DOI: 10.4049/jimmunol.1300479] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Germinal centers (GCs) provide a microenvironment that promotes and regulates the interactions of B cells with follicular Th (TFH) cells. In this study, we show that there are significantly higher frequencies of CXCR5(+)ICOS(+) TFH cells in autoimmune BXD2 mice, and these cells express both IL-21R and IL-17RA. Although IL-17 and IL-21 are both important for the formation of spontaneous GCs and development of pathogenic autoantibodies, IL-21, but not IL-17, is required for the proper development of TFH cells in BXD2 mice. The total numbers of TFH cells and their ability to induce B cell responses in vitro were not affected by a deficiency of IL-17RA in BXD2-Il17ra(-/-) mice, the majority of CXCR5(+) TFH cells from BXD2-Il17ra(-/-) mice were, however, not localized in the GC light zone (LZ). Interruption of IL-17 signaling, either acutely by AdIL-17R:Fc or chronically by Il17ra(-/-), disrupted TFH-B interactions and abrogated the generation of autoantibody-forming B cells in BXD2 mice. IL-17 upregulated the expression of regulator of G-protein signaling 16 (RGS16) to promote the ability of TFH to form conjugates with B cells, which was abolished in TFH cells from BXD2-Rgs16(-/-) mice. The results suggests that IL-17 is an extrinsic stop signal that it acts on postdifferentiated IL-17RA(+) TFH to enable its interaction with responder B cells in the LZ niche. These data suggest a novel concept that TFH differentiation and its stabilization in the LZ are two separate checkpoints and that IL-21 and IL-17 act at each checkpoint to enable pathogenic GC development.
Collapse
Affiliation(s)
- Yanna Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hwang IY, Hwang KS, Park C, Harrison KA, Kehrl JH. Rgs13 constrains early B cell responses and limits germinal center sizes. PLoS One 2013; 8:e60139. [PMID: 23533672 PMCID: PMC3606317 DOI: 10.1371/journal.pone.0060139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Germinal centers (GCs) are microanatomic structures that develop in secondary lymphoid organs in response to antigenic stimulation. Within GCs B cells clonally expand and their immunoglobulin genes undergo class switch recombination and somatic hypermutation. Transcriptional profiling has identified a number of genes that are prominently expressed in GC B cells. Among them is Rgs13, which encodes an RGS protein with a dual function. Its canonical function is to accelerate the intrinsic GTPase activity of heterotrimeric G-protein α subunits at the plasma membrane, thereby limiting heterotrimeric G-protein signaling. A unique, non-canonical function of RGS13 occurs following translocation to the nucleus, where it represses CREB transcriptional activity. The functional role of RGS13 in GC B cells is unknown. To create a surrogate marker for Rgs13 expression and a loss of function mutation, we inserted a GFP coding region into the Rgs13 genomic locus. Following immunization GFP expression rapidly increased in activated B cells, persisted in GC B cells, but declined in newly generated memory B and plasma cells. Intravital microscopy of the inguinal lymph node (LN) of immunized mice revealed the rapid appearance of GFP+ cells at LN interfollicular regions and along the T/B cell borders, and eventually within GCs. Analysis of WT, knock-in, and mixed chimeric mice indicated that RGS13 constrains extra-follicular plasma cell generation, GC size, and GC B cell numbers. Analysis of select cell cycle and GC specific genes disclosed an aberrant gene expression profile in the Rgs13 deficient GC B cells. These results indicate that RGS13, likely acting at cell membranes and in nuclei, helps coordinate key decision points during the expansion and differentiation of naive B cells.
Collapse
Affiliation(s)
- Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyung-Sun Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chung Park
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen A. Harrison
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John H. Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Louwette S, Van Geet C, Freson K. Regulators of G protein signaling: role in hematopoiesis, megakaryopoiesis and platelet function. J Thromb Haemost 2012; 10:2215-22. [PMID: 22908964 DOI: 10.1111/j.1538-7836.2012.04903.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulators of G protein signaling (RGS) are intracellular signaling regulators that bind activated G protein α subunits (Gα) and increase their intrinsic GTPase activity via their common RGS homology domain. In addition to their GTPase accelerating activity (GAP), RGS proteins also contain other domains that regulate their receptor selectivity, their interaction with other proteins such as adenylyl cyclase or their subcellular localization via interaction with scaffold proteins such as tubulin, 14-3-3 or spinophilin. There are at least 37 different RGS family members in humans and numerous physiological functions have been assigned to these proteins, which have rather a tissue-specific expression pattern. The role of some RGS proteins was shown to be important for hematopoiesis. More recent studies also focused on their expression in platelets, and for R4 RGS subfamily members RGS2, RGS16 and RGS18, it could be demonstrated that they regulate megakaryopoiesis and/or platelet function. These functional studies mostly comprised in vitro experiments and in vivo studies using small animal models. Their role in human pathology related to platelet dysfunction remains still largely unknown, except for a case report with a RGS2 gain of function mutation. In addition to an introduction on RGS signaling and different effectors with a special focus on the R4 subfamily members, we here will give an overview of the studies related to the role of RGS proteins in hematopoiesis, megakaryopoiesis and platelet function.
Collapse
Affiliation(s)
- S Louwette
- Center for Molecular and Vascular Biology Departement of Pediatrics, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
33
|
El Shikh MEM, Pitzalis C. Follicular dendritic cells in health and disease. Front Immunol 2012; 3:292. [PMID: 23049531 PMCID: PMC3448061 DOI: 10.3389/fimmu.2012.00292] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/31/2012] [Indexed: 12/17/2022] Open
Abstract
Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | | |
Collapse
|
34
|
Cané S, Ponnappan S, Ponnappan U. Altered regulation of CXCR4 expression during aging contributes to increased CXCL12-dependent chemotactic migration of CD4(+) T cells. Aging Cell 2012; 11:651-8. [PMID: 22568557 DOI: 10.1111/j.1474-9726.2012.00830.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chemokine-dependent migration of T lymphocytes assures recirculation of naïve T cells to secondary lymphoid organs and tissue-specific trafficking of memory-effector T cells. Previous studies carried out in rodents have demonstrated age-associated modulation of the expression of chemokine receptors such as CXCR4 and CCR5; however, little is known about the molecular mechanisms that regulate receptor expression and turnover in T cells, during advancing age in humans. Our recent results demonstrating increased chemotactic migration in response to CXCL12 in CD4(+) T cells obtained from the elderly, as compared to those from young donors, led us to hypothesize that increase in surface expression, because of altered endocytic regulation of CXCR4 on T cells during aging, might be directly responsible for increased migration toward CXCL12. Studies presented here demonstrate a significant increase in the surface expression of CXCR4 in CD4(+) T cells from elderly human donors, relative to those from the young. Additionally, CXCL12-mediated endocytosis of CXCR4 was differentially regulated during aging, which could be attributed to alterations in the ubiquitination of CXCR4. Thus, altered ubiquitination of CXCR4 may contribute to the increased surface expression and enhanced T-cell migration to chemotactic stimuli in the elderly.
Collapse
Affiliation(s)
- Stefania Cané
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
35
|
Kroenke MA, Eto D, Locci M, Cho M, Davidson T, Haddad EK, Crotty S. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2012; 188:3734-44. [PMID: 22427637 DOI: 10.4049/jimmunol.1103246] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Follicular helper CD4 T (Tfh) cells provide B cells with signals that are important for the generation of high-affinity Abs and immunological memory and, therefore, are critical for the protective immunity elicited by most human vaccines. Transcriptional regulators of human Tfh cell differentiation are poorly understood. In this article, we demonstrate that Bcl6 controls specific gene modules for human Tfh cell differentiation. The introduction of Bcl6 expression in primary human CD4 T cells resulted in the regulation of a core set of migration genes that enable trafficking to germinal centers: CXCR4, CXCR5, CCR7, and EBI2. Bcl6 expression also induced a module of protein expression critical for T-B interactions, including SAP, CD40L, PD-1, ICOS, and CXCL13. This constitutes direct evidence for Bcl6 control of most of these functions and includes three genes known to be loci of severe human genetic immunodeficiencies (CD40L, SH2D1A, and ICOS). Introduction of Bcl6 did not alter the expression of IL-21 or IL-4, the primary cytokines of human Tfh cells. We show in this article that introduction of Maf (c-Maf) does induce the capacity to express IL-21. Surprisingly, Maf also induced CXCR5 expression. Coexpression of Bcl6 and Maf revealed that Bcl6 and Maf cooperate in the induction of CXCR4, PD-1, and ICOS. Altogether, these findings reveal that Bcl6 and Maf collaborate to orchestrate a suite of genes that define core characteristics of human Tfh cell biology.
Collapse
Affiliation(s)
- Mark A Kroenke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Gossner A, Roupaka S, Foster J, Hunter N, Hopkins J. Transcriptional profiling of peripheral lymphoid tissue reveals genes and networks linked to SSBP/1 scrapie pathology in sheep. Vet Microbiol 2011; 153:218-28. [PMID: 21684093 DOI: 10.1016/j.vetmic.2011.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are slow and progressive neurodegenerative diseases of humans and animals. The major target organ for all TSEs is the brain but some TSE agents are associated with prior accumulation within the peripheral lymphoid system. Many studies have examined the effects of scrapie infection on the expression of central nervous system (CNS) genes, but this study examines the progression of scrapie pathology in the peripheral lymphoid system and how scrapie infection affects the transcriptome of the lymph nodes and spleen. Infection of sheep with SSBP/1 scrapie resulted in PrP(Sc) deposition in the draining prescapular lymph node (PSLN) by 25 days post infection (dpi) in VRQ/VRQ genotype sheep and 75 dpi in tonsils and spleen. Progression of PrP(Sc) deposition in VRQ/ARR animals was 25 dpi later in the PSLN and 250 dpi later in spleen. Microarray analysis of 75 dpi tissues from VRQ/VRQ sheep identified 52 genes in PSLN and 37 genes in spleen cells that showed significant difference (P ≤ 0.05) between scrapie-infected and mock-infected animals. Transcriptional pathway analysis highlighted immunological disease, cell death and neurological disease as the biological pathways associated with scrapie pathogenesis in the peripheral lymphoid system. PrP(Sc) accumulation of lymphoid tissue resulted in the repression of genes linked to inflammation and oxidative stress, and the up-regulation of genes related to apoptosis.
Collapse
Affiliation(s)
- Anton Gossner
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | | | | | | | | |
Collapse
|
37
|
Jacobson O, Weiss ID, Szajek LP, Niu G, Ma Y, Kiesewetter DO, Peled A, Eden HS, Farber JM, Chen X. Improvement of CXCR4 tracer specificity for PET imaging. J Control Release 2011; 157:216-23. [PMID: 21964282 DOI: 10.1016/j.jconrel.2011.09.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 01/30/2023]
Abstract
Tumors expressing the chemokine receptor CXCR4 have been reported to be more aggressive and to produce more metastatic seeding in specific organs, such as the bone marrow. However, evaluation of tumors for CXCR4 expression requires testing of ex vivo biopsy samples, and is not routinely done in cancer management. In prior work to address this issue, we and others have developed tracers for positron emission tomography (PET) that targeted CXCR4, but in addition to binding to CXCR4 these tracers also bound to red blood cells (and to other unrelated targets) in vivo. Here we report two new tracers based on the CXCR4 peptide antagonist 4F-benzoyl-TN14003 (T140) that bind to CXCR4, but not to undesired targets. These tracers, NOTA-NFB and DOTA-NFB, show slight reductions in both 1) binding affinities for CXCR4 and 2) inhibition of CXCL12 induced migration, compared to T140, in vitro. Both NOTA-NFB and DOTA-NFB specifically accumulate in CXCR4-positive, but not CXCR4-negative, tumor xenografts in mice and allow clear visualization of CXCR4 expression by PET. Evaluation of NOTA-NFB and DOTA-NFB for their potential to mobilize immune cells and progenitor cells from the bone marrow to the peripheral blood revealed slightly reduced, but still comparable, results to the parent molecule T140. The tracers reported here may allow the evaluation of CXCR4 expression in primary tumors and metastatic nodules, and enable better informed, more personalized treatment for patients with cancer.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gibbons DL, Abeler-Dörner L, Raine T, Hwang IIY, Jandke A, Wencker M, Deban L, Rudd CE, Irving PM, Kehrl JH, Hayday AC. Cutting Edge: Regulator of G protein signaling-1 selectively regulates gut T cell trafficking and colitic potential. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:2067-71. [PMID: 21795595 PMCID: PMC3166702 DOI: 10.4049/jimmunol.1100833] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The RGS1 gene is associated with celiac disease, multiple sclerosis, and type I diabetes, which are all T cell-mediated pathologies, yet there is no reported analysis of regulator of G protein signaling (RGS)1 biology in human T cells. This study shows that RGS1 expression is substantially higher in T cells from human gut versus peripheral blood and that this can be exaggerated in intestinal inflammation. Elevated RGS1 levels profoundly reduce T cell migration to lymphoid-homing chemokines, whereas RGS1 depletion selectively enhances such chemotaxis in gut T cells and impairs their colitogenic potential. These findings provide a revised framework in which to view the linkage of RGS1 to inflammatory disease.
Collapse
Affiliation(s)
- Deena L. Gibbons
- National Institute for Health Research, Biomedical Research Centre at King’s Health Partners
- Peter Gorer Department of Immunobiology, Kings College London
| | - Lucie Abeler-Dörner
- National Institute for Health Research, Biomedical Research Centre at King’s Health Partners
- Peter Gorer Department of Immunobiology, Kings College London
| | - Tim Raine
- Dept of Pathology, University of Cambridge
- Peter Gorer Department of Immunobiology, Kings College London
| | | | | | - Melanie Wencker
- Cancer Research UK, London Research Institute
- Peter Gorer Department of Immunobiology, Kings College London
| | - Livija Deban
- Cancer Research UK, London Research Institute
- Peter Gorer Department of Immunobiology, Kings College London
| | | | - Peter M. Irving
- National Institute for Health Research, Biomedical Research Centre at King’s Health Partners
| | | | - Adrian C. Hayday
- National Institute for Health Research, Biomedical Research Centre at King’s Health Partners
- Cancer Research UK, London Research Institute
- Peter Gorer Department of Immunobiology, Kings College London
| |
Collapse
|
39
|
Sun J, Sukhova GK, Zhang J, Chen H, Sjöberg S, Libby P, Xia M, Xiong N, Gelb BD, Shi GP. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 2011; 32:15-23. [PMID: 21817099 DOI: 10.1161/atvbaha.111.235002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cathepsin K (CatK) is one of the most potent mammalian elastases. We have previously shown increased expression of CatK in human abdominal aortic aneurysm (AAA) lesions. Whether this protease participates directly in AAA formation, however, remains unknown. METHODS AND RESULTS Mouse experimental AAA was induced with aortic perfusion of a porcine pancreatic elastase. Using this experimental model, we demonstrated that absence of CatK prevented AAA formation in mice 14 days postperfusion. CatK deficiency significantly reduced lesion CD4(+) T-cell content, total lesion and medial cell proliferation and apoptosis, medial smooth muscle cell (SMC) loss, elastinolytic CatL and CatS expression, and elastin fragmentation, but it did not affect AAA lesion Mac-3(+) macrophage accumulation or CD31(+) microvessel numbers. In vitro studies revealed that CatK contributed importantly to CD4(+) T-cell proliferation, SMC apoptosis, and other cysteinyl cathepsin and matrix metalloproteinase expression and activities in SMCs and endothelial cells but played negligible roles in microvessel growth and monocyte migration. AAA lesions from CatK-deficient mice showed reduced elastinolytic cathepsin activities compared with those from wild-type control mice. CONCLUSIONS This study demonstrates that CatK plays an essential role in AAA formation by promoting T-cell proliferation, vascular SMC apoptosis, and elastin degradation and by affecting vascular cell protease expression and activities.
Collapse
Affiliation(s)
- Jiusong Sun
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
41
|
Zhou X, Shapiro L, Fellingham G, Willardson BM, Burton GF. HIV replication in CD4+ T lymphocytes in the presence and absence of follicular dendritic cells: inhibition of replication mediated by α-1-antitrypsin through altered IκBα ubiquitination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3148-55. [PMID: 21263074 PMCID: PMC3101708 DOI: 10.4049/jimmunol.1001358] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Follicular dendritic cells (FDCs) increase HIV replication and virus production in lymphocytes by increasing the activation of NF-κB in infected cells. Because α-1-antitrypsin (AAT) decreases HIV replication in PBMCs and monocytic cells and decreases NF-κB activity, we postulated that AAT might also block FDC-mediated HIV replication. Primary CD4(+) T cells were infected with HIV and cultured with FDCs or their supernatant with or without AAT, and ensuing viral RNA and p24 production were monitored. NF-κB activation in the infected cells was also assessed. Virus production was increased in the presence of FDC supernatant, but the addition of AAT at concentrations >0.5 mg/ml inhibited virus replication. AAT blocked the nuclear translocation of NF-κB p50/p65 despite an unexpected elevation in associated phosphorylated and ubiquitinated IκBα (Ub-IκBα). In the presence of AAT, degradation of cytoplasmic IκBα was dramatically inhibited compared with control cultures. AAT did not inhibit the proteasome; however, it altered the pattern of ubiquitination of IκBα. AAT decreased IκBα polyubiquitination linked through ubiquitin lysine residue 48 and increased ubiquitination linked through lysine residue 63. Moreover, lysine reside 63-linked Ub-IκBα degradation was substantially slower than lysine residue 48-linked Ub-IκBα in the presence of AAT, correlating altered ubiquitination with a prolonged IκBα t(1/2). Because AAT is naturally occurring and available clinically, examination of its use as an inhibitory agent in HIV-infected subjects may be informative and lead to the development of similar agents that inhibit HIV replication using a novel mechanism.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Leland Shapiro
- Denver Veterans Affairs Medical Center and Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, CO 80220
| | | | - Barry M. Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Gregory F. Burton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
42
|
The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 2009; 31:457-68. [PMID: 19631565 DOI: 10.1016/j.immuni.2009.07.002] [Citation(s) in RCA: 969] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 06/18/2009] [Accepted: 07/07/2009] [Indexed: 12/11/2022]
Abstract
Follicular helper T (Tfh) cells provide selection signals to germinal center B cells, which is essential for long-lived antibody responses. High CXCR5 and low CCR7 expression facilitates their homing to B cell follicles and distinguishes them from T helper 1 (Th1), Th2, and Th17 cells. Here, we showed that Bcl-6 directs Tfh cell differentiation: Bcl-6-deficient T cells failed to develop into Tfh cells and could not sustain germinal center responses, whereas forced expression of Bcl-6 in CD4(+) T cells promoted expression of the hallmark Tfh cell molecules CXCR5, CXCR4, and PD-1. Bcl-6 bound to the promoters of the Th1 and Th17 cell transcriptional regulators T-bet and RORgammat and repressed IFN-gamma and IL-17 production. Bcl-6 also repressed expression of many microRNAs (miRNAs) predicted to control the Tfh cell signature, including miR-17-92, which repressed CXCR5 expression. Thus, Bcl-6 positively directs Tfh cell differentiation, through combined repression of miRNAs and transcription factors.
Collapse
|
43
|
G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 2009; 21:1045-53. [DOI: 10.1016/j.cellsig.2009.02.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
|
44
|
Liang G, Bansal G, Xie Z, Druey KM. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling. J Biol Chem 2009; 284:21719-27. [PMID: 19509421 DOI: 10.1074/jbc.m109.028407] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.
Collapse
Affiliation(s)
- Genqing Liang
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
Wu Y, El Shikh MEM, El Sayed RM, Best AM, Szakal AK, Tew JG. IL-6 produced by immune complex-activated follicular dendritic cells promotes germinal center reactions, IgG responses and somatic hypermutation. Int Immunol 2009; 21:745-56. [PMID: 19461124 DOI: 10.1093/intimm/dxp041] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reports that follicular dendritic cells (FDCs) produce IL-6 prompted the hypotheses that immune complexes (ICs) induce FDCs to produce IL-6 and that FDC-IL-6 promotes germinal center (GC) reactions, somatic hypermutation (SHM) and IgG production. FDCs were activated in vitro by addition of ICs and FDC-IL-6 production was determined. Wild-type (WT) and IL-6 knockout (KO) mice, as well as chimeras with WT and IL-6 KO cells, were immunized with (4-hydroxy-3-nitrophenyl)-acetyl (NP)-chicken gamma globulin (CGG) and used to study anti-(4-hydroxy-3-iodo-5-nitrophenyl) acetyl (NIP) responses, GC formation and SHM in the VH186.2 gene segment in Ig-gamma. FDC-IL-6 increased when FDCs encountered ICs. At low immunogen dose, 1 microg NP-CGG per mouse, the IgG anti-NIP response in IL-6 KO mice was low and immunohistochemistry revealed a reduction in both the number and size of GCs. The physiological relevance of FDC-IL-6 was apparent in the chimeric mice where total splenocytes from WT mice were unable to provide the IL-6 needed for normal IgG and GC responses in IL-6 KO animals with IL-6-defective FDCs. Moreover, the rate of mutation decreased from 18 to 8.9 mutations per 1000 bases (P < 0.001) in WT versus IL-6 KO mice. Addition of anti-IL-6 to GC reactions in vitro reduced antibody levels and SHM from 3.5 to 0.65 mutations per 1000 bases (P < 0.02). Thus, the absence of FDC-IL-6 correlated with a reduction in SHM that coincided with the reduction in GCs and specific anti-NIP. This is the first study to document that ICs induce FDC-IL-6 and that FDC-derived IL-6 is physiologically relevant in generating optimal GC reactions, SHM and IgG levels.
Collapse
Affiliation(s)
- Yongzhong Wu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rubin JB. Chemokine signaling in cancer: one hump or two? Semin Cancer Biol 2009; 19:116-22. [PMID: 18992347 PMCID: PMC2694237 DOI: 10.1016/j.semcancer.2008.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Chemokines and their receptors play essential roles in the development and function of multiple tissues. Chemokine expression, particularly CXCL12 and its receptor CXCR4, has prognostic significance in several cancers apparently due to chemokine mediated growth and metastatic spread. These observations provide the rationale for pursuing CXCR4 inhibition for cancer chemotherapy. However, the multiple homeostatic functions of CXCR4 may preclude global inhibition as a therapeutic strategy. Here I review CXCR4 signaling and how it might differ in normal and transformed cells with special emphasis on the role that altered CXCR4 counter-regulation might play in tumor biology. I propose that CXCR4 mediates unique signals in cancer cells as a consequence of abnormal counter-regulation and that this results in novel biological responses. The importance of testing this hypothesis lies in the possibility that targeting abnormal CXCR4 signaling might provide an anti-tumor effect without disturbing normal CXCR4 functions.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics/Division of Pediatric Hematology and Oncology, Campus Box 8208, 660 South Euclid Avenue, Washington University School of Medicine, St Louis, MO 63110, USA. rubin
| |
Collapse
|
47
|
Victoratos P, Kollias G. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity 2009; 30:130-42. [PMID: 19119026 DOI: 10.1016/j.immuni.2008.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/30/2008] [Accepted: 10/17/2008] [Indexed: 11/16/2022]
Abstract
Follicular dendritic cells (FDCs) are important for the induction of protective T cell-dependent humoral responses, but their contribution to autoimmunity remains elusive. Here, gene-targeted interruption of FDC development was combined with the K/BxN mouse model of arthritis. We found that FDCs were essential for autoantibody production through two distinct but cooperative functions. In a T cell-independent fashion, FDCs loaded with autoantigen-containing immune complexes supported germinal center (GC) B cell development. Additionally, the integrity of FDC networks was required for the recruitment of arthritogenic follicular helper T cells, a process that drove T-B cell interactions and productive GC reactivity. Importantly, pharmacological interference in the maintenance of FDCs ameliorated disease development, suggesting the FDC as a potential target for dampening autoimmunity.
Collapse
Affiliation(s)
- Panayiotis Victoratos
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece.
| | | |
Collapse
|
48
|
Song KS, Choi YH, Kim JM, Lee H, Lee TJ, Yoon JH. Suppression of prostaglandin E2-induced MUC5AC overproduction by RGS4 in the airway. Am J Physiol Lung Cell Mol Physiol 2009; 296:L684-92. [PMID: 19201815 DOI: 10.1152/ajplung.90396.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism by which E-prostanoid (EP) receptor is critically involved in PGE(2)-induced mucin 5AC (MUC5AC) gene expression in the airway has been unclear. Furthermore, there have been little reports regarding the negative regulatory mechanism and/or proteins that affect PGE(2)-induced MUC5AC overproduction. In the present study, we found that PGE(2) induced MUC5AC gene expression in a dose-dependent manner (EC(50): 73.31 +/- 3.13 nM) and that the EP(2/4)-specific agonist, misoprostol, increased MUC5AC mRNA level, whereas the EP(1/3)-specific agonist, sulprostone, had no effect. Interestingly, the cAMP concentration (685.1 +/- 14.9 pM) of the EC(50) value of EP(4)-mediated cAMP production was much higher than that of EP(2) (462.33 +/- 23.79 pM), suggesting that EP(4) has higher sensitivity to PGE(2) compared with EP(2). Moreover, PGE(2)-induced Muc5ac overproduction was much increased in regulator of G protein signaling (Rgs) 4 knockout (KO) mice compared with wild-type mice at both transcriptional and translational levels, and it was dramatically suppressed in Rgs4 KO mice that had been infected with lentivirus expressing RGS4 (lenti::RGS4) compared with lentivirus expressing enhanced green fluorescent protein (lenti::eGFP). Finally, we demonstrate that PGE(2) can induce MUC5AC overproduction via the EP(4) receptor and that RGS4 may have suppressive effects in controlling MUC5AC overexpression in the airway. These findings may provide a molecular paradigm for the development of novel drugs for respiratory diseases.
Collapse
|
49
|
Abstract
Allergic diseases such as asthma are elicited by maladaptive activation of immune cells such as mast cells and lymphocytes by otherwise innocuous allergens. The numerous mediators secreted by such cells promote both acute inflammation and, in many instances, chronic tissue remodeling. Most of these compounds exert their effects on end-organ targets such as epithelial and endothelial cells and airway smooth muscle by activating G-protein-coupled receptors (GPCRs), which are by far the most abundant type of cell surface receptor. Since GPCRs are also the most common target of allergy therapeutics, a better understanding of their intracellular signaling mechanisms is vital to improve the efficacy of such drugs or to develop new targets. In this review, we focus on some of the new regulatory elements that control the duration and amplitude of GPCR signal transduction pathways in immune effector cells and end-organ structural cells affected by allergic inflammation.
Collapse
Affiliation(s)
- Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 10 Center Drive Room 11N242, Bethesda, MD 20892, USA,
| |
Collapse
|
50
|
Bansal G, DiVietro J, Kuehn HS, Rao S, Nocka KH, Gilfillan AM, Druey KM. RGS13 controls g protein-coupled receptor-evoked responses of human mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7882-90. [PMID: 19017978 PMCID: PMC2693264 DOI: 10.4049/jimmunol.181.11.7882] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgE-mediated mast cell degranulation and release of vasoactive mediators induced by allergens elicits allergic responses. Although G protein-coupled receptor (GPCR)-induced signals may amplify IgE-dependent degranulation, how GPCR signaling in mast cells is regulated remains incompletely defined. We investigated the role of regulator of G protein signaling (RGS) proteins in the modulation of these pathways in human mast cells. Several RGS proteins were expressed in mast cells including RGS13, which we previously showed inhibited IgE-mediated mast cell degranulation and anaphylaxis in mice. To characterize how RGS13 affects GPCR-mediated functions of human mast cells, we analyzed human mast cell lines (HMC-1 and LAD2) depleted of RGS13 by specific small interfering RNA or short hairpin RNA and HMC-1 cells overexpressing RGS13. Transient RGS13 knockdown in LAD2 cells lead to increased degranulation to sphingosine-1-phosphate but not to IgE-Ag or C3a. Relative to control cells, HMC-1 cells stably expressing RGS13-targeted short hairpin RNA had greater Ca(2+) mobilization in response to several natural GPCR ligands such as adenosine, C5a, sphingosine-1-phosphate, and CXCL12 than wild-type cells. Akt phosphorylation, chemotaxis, and cytokine (IL-8) secretion induced by CXCL12 were also greater in short hairpin RGS13-HMC-1 cells compared with control. RGS13 overexpression inhibited CXCL12-evoked Ca(2+) mobilization, Akt phosphorylation and chemotaxis. These results suggest that RGS13 restricts certain GPCR-mediated biological responses of human mast cells.
Collapse
Affiliation(s)
- Geetanjali Bansal
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | | | | | | | | | | | - Kirk M. Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|