1
|
Jia W, Wang G, Sun S, Chen X, Xiang S, Zhang B, Huang Z. PA2G4 in health and disease: An underestimated multifunctional regulator. J Adv Res 2025:S2090-1232(25)00074-8. [PMID: 39923993 DOI: 10.1016/j.jare.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Proliferation-associated protein 2G4 (PA2G4), also known as ErbB3-binding protein 1 (EBP1), is an evolutionarily conserved, ubiquitously expressed, multifunctional factor in health and disease. In recent decades, its role as a sophisticated regulator in a broad range of biological processes has drawn widespread attention from researchers. AIM OF REVIEW We introduce the molecular structure, functional modules, and post-translational modifications of PA2G4. We further elaborate on its role and function in immune microenvironment modulation, cell growth, neural homeostasis and embryonic development. In particular, we summarize its relevance to tumorigenesis and cancer progression and describe its molecular mechanisms in regulating the hallmarks of cancers. This review aims to provide a comprehensive blueprint of PA2G4 functions and to inspire further basic and translational studies. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to its versatile domains and motifs, PA2G4 regulates a variety of molecular processes, including transcription, translation, proteostasis and epigenetic modulation, suggesting its critical roles in maintaining homeostasis. There are two isoforms of the PA2G4 protein: PA2G4-p42 and PA2G4-p48. While both isoforms regulate cellular activities, they often exert distinct or even contradictory effects. Dysfunction and aberrant expression of PA2G4 isoforms lead to the occurrence and progression of various diseases, indicating their role as predictive markers or therapeutic targets.
Collapse
Affiliation(s)
- Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocheng Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Department of Pharmacy, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Wang Y, Xing J, Liang Y, Liang H, Liang N, Li J, Yin G, Li X, Zhang K. The structure and function of multifunctional protein ErbB3 binding protein 1 (Ebp1) and its role in diseases. Cell Biol Int 2024; 48:1069-1079. [PMID: 38884348 DOI: 10.1002/cbin.12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.
Collapse
Affiliation(s)
- Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Jiang L, Niu W, Zheng Q, Meng G, Chen X, Zhang M, Deng G, Mao Q, Wang L. Identification of an Autoantibody Against ErbB-3-Binding Protein-1 in the Sera of Patients With Chronic Hepatitis B Virus Infection. Front Immunol 2021; 12:640335. [PMID: 34113340 PMCID: PMC8185336 DOI: 10.3389/fimmu.2021.640335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Background Studies have shown that autoimmune response contributes to chronic hepatitis B (CHB) development. Aim This study aimed to identify autoantibodies in the sera of patients with CHB and to investigate the association of autoimmune response with disease severity in CHB. Methods Proteins from human liver carcinoma cell line HepG2 were separated by two-dimensional electrophoresis. The candidate autoantigens were recognized by serum autoantibodies from Chinese CHB patients. Immunohistochemical staining was performed to determine the hepatic expression of the autoantigen in CHB patients with different inflammatory grades. Enzyme-linked immunosorbent assay (ELISA) was conducted to measure the prevalence and the levels of serum autoantibody in CHB patients with different disease severity. Flow cytometry analysis was carried out to assess the autoreactive T cell response in the peripheral circulation of CHB patients. Results ErbB-3-binding protein-1 (EBP-1) was identified as an autoantigen of serum autoantibodies in CBP patients. EBP-1 protein expression was upregulated in the liver of CHB patients with high-grade hepatic inflammation. The prevalence and levels of serum anti-EBP1 IgG were significantly increased in CHB patients with severe diseases compared with those with mild or moderate diseases, but none was detectable in the healthy controls. EBP-1 peptides induced proinflammatory cytokine expression in CD4+ T cells from CHB patients. Conclusion Our results demonstrate the presence of an autoantibody against EBP-1 in the sera as well as EBP-1-reactive T cells in the peripheral blood of CHB patient. EBP-1-induced autoimmune response is positively associated with the disease severity, suggesting that EBP-1-induced autoimmune response possibly contributes to progressive liver failure.
Collapse
Affiliation(s)
- Li Jiang
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Niu
- Department of Immunology & Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian Zheng
- Function Center, North Sichuan Medical College, Nanchong, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoling Chen
- Department of Immunology & Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjun Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Immunology & Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
The roles of multifunctional protein ErbB3 binding protein 1 (EBP1) isoforms from development to disease. Exp Mol Med 2020; 52:1039-1047. [PMID: 32719408 PMCID: PMC8080562 DOI: 10.1038/s12276-020-0476-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The roles of the two isoforms of ErbB3-binding protein 1 (Ebp1) in cellular function and its regulation in disease and development is a stimulating area in current fields of biology, such as neuroscience, cancer biology, and structural biology. Over the last two decades, a growing body of studies suggests have suggested different functions for the EBP1 isoforms in various cancers, along with their specific binding partners in the ubiquitin-proteasome system. Owing to the specific cellular context or spatial/temporal expression of the EBP1 isoforms, either transcriptional repression or the activation function of EBP1 has been proposed, and epigenetic regulation by p48 EBP1 has also been observed during in the embryo development, including in brain development and neurologic disorders, such as schizophrenia, in using an Ebp1 knockout mouse model. Here, we review recent findings that have shaped our current understanding of the emerging function of EBP1 isoforms in cellular events and gene expression, from development to disease. A pair of proteins that originate from a common gene exert strikingly different effects on embryonic development as well as tumor growth and progression. RNA transcripts generated from the PA2G4 gene can undergo enzymatic processing to yield two different protein products, p42 EB1 and p48 EB1. These proteins differ by the presence or absence of 54 amino acids at one end, and Jee-Yin Ahn at the Sungkyunkwan University School of Medicine, Suwon, South Korea, and colleagues have reviewed current insights into the functional consequences of this difference. The two proteins bind to distinct sets of molecular partners. The p48 form appears to regulate a host of genes involved in brain development, but also appears to drive cancerous growth in various tumors. In contrast, p42 is scarcer during development, and appears to inhibit tumor formation.
Collapse
|
5
|
Nguyen DQ, Hoang DH, Nguyen TTV, Ho HD, Huynh V, Shin JH, Ly QT, Thi Nguyen DD, Ghoda L, Marcucci G, Nguyen LXT. Ebp1 p48 promotes oncogenic activities in human colon cancer cells through regulation of TIF-90-mediated ribosomal RNA synthesis. J Cell Physiol 2019; 234:17612-17621. [PMID: 30793766 DOI: 10.1002/jcp.28385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
The ErbB3-binding protein 1 (Ebp1) has been reported as either an oncogenic regulator or a tumor suppressor in a variety of cancers. Here, we show that Ebp1 p48, a predominant expression isoform, is highly expressed in the majority of human colon tumor cells compared with normal adjacent tissues and its expression is required for the oncogenic activities of these cells. Depletion of Ebp1 expression in primary colon cancer cells inhibits cell proliferation, colony forming, and invasion in vitro as well as tumor formation in vivo and enhances cell sensitivity to irradiation. We further demonstrated that Ebp1 interacts with TIF-90, a splice variant of transcription initiation factor IA (TIF-IA) of the RNA polymerase I complex, allowing for regulation of ribosomal RNA (rRNA) synthesis and oncogenesis in human colon cancer cells. Moreover, Ebp1 expression is essential for Akt protected TIF-90 stability by preventing TIF-90's ubiquitination by Mdm2 and hence, its proteasomal degradation. The results of the present study support a mechanism of underlying oncogenic activities by means of Ebp1 through regulation of TIF-90-mediated rRNA synthesis and suggest the potential therapeutic treatment of colon cancer by targeting Ebp1 and its signaling.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Vo Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huu Duc Ho
- Department of Gastrointestinal Surgery, Thong Nhat Hospital, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - June Ho Shin
- Stanford Cancer Institute, Stanford University, Stanford, California
| | - Quoc Trung Ly
- Department of Medicine, Phuong Chau International Hospital, Sóc Trăng, Vietnam
| | | | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
6
|
Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, Nguyen LXT. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol 2018; 233:9110-9120. [PMID: 30076717 DOI: 10.1002/jcp.26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Nguyen Vo
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
7
|
ErbB3 binding protein 1 (EBP1) participates in the regulation of intestinal inflammation via mediating Akt signaling pathway. Mol Immunol 2015; 67:540-51. [DOI: 10.1016/j.molimm.2015.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 01/22/2023]
|
8
|
|
9
|
Turksma AW, Bontkes HJ, Ruizendaal JJ, Scholten KBJ, Akershoek J, Rampersad S, Moesbergen LM, Cillessen SAGM, Santegoets SJAM, de Gruijl TD, Leemans CR, Meijer CJLM, Hooijberg E. Exploring dendritic cell based vaccines targeting survivin for the treatment of head and neck cancer patients. J Transl Med 2013; 11:152. [PMID: 23787039 PMCID: PMC3695847 DOI: 10.1186/1479-5876-11-152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/10/2013] [Indexed: 01/01/2023] Open
Abstract
Background New treatment modalities are needed for the treatment of cancers of the head and neck region (HNSCC). Survivin is important for the survival and proliferation of tumor cells and may therefore provide a target for immunotherapy. Here we focused on the ex vivo presence and in vitro induction of survivin specific T cells. Methods Tetramer staining and ELIspot assays were used to document the presence of survivin specific T cells in patient derived material, and to monitor the presence and persistence of survivin specific T cells after repeated in vitro stimulation with autologous dendritic cells. Results Ex vivo analysis showed the presence of survivin-specific T cells in the peripheral blood (by tetramer analysis) and in the draining lymph node (by ELIspot analysis) in a HNSCC and a locally advanced breast cancer patient respectively. However, we were unable to maintain isolated survivin specific T cells for prolonged periods of time. For the in vitro generation of survivin specific T cells, monocyte derived DC were electroporated with mRNA encoding full length survivin or a survivin mini-gene together with either IL21 or IL12 mRNA. Western blotting and immunohistochemical staining of dendritic cell cytospin preparations confirmed translation of the full length survivin protein. After repeated stimulation we observed an increase, followed by a decrease, of the number of survivin specific T cells. FACS sorted or limiting dilution cloned survivin specific T cells could not be maintained on feeder mix for prolonged periods of time. Protein expression analysis subsequently showed that activated, but not resting T cells contain survivin protein. Conclusions Here we have shown that survivin specific T cells can be detected ex vivo in patient derived material. Furthermore, survivin specific T cells can be induced in vitro using autologous dendritic cells with enforced expression of survivin and cytokines. However, we were unable to maintain enriched or cloned survivin specific T cells for prolonged periods of time. Endogenous expression of survivin in activated T cells and subsequent fratricide killing might explain our in vitro observations. We therefore conclude that survivin, although it is a universal tumor antigen, might not be the ideal target for immunotherapeutic strategies for the treatment of cancer of the head and neck.
Collapse
Affiliation(s)
- Annelies W Turksma
- Department of Pathology, VU University Medical Center-Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mishra S, Sinha S. Immunoinformatics and modeling perspective of T cell epitope-based cancer immunotherapy: a holistic picture. J Biomol Struct Dyn 2010; 27:293-306. [PMID: 19795913 DOI: 10.1080/07391102.2009.10507317] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer immunotherapy is fast gaining global attention with its unique position as a potential therapy showing promise in cancer prevention and cure. It utilizes the natural system of immunity as opposed to chemotherapy and radiotherapy that utilize chemical drugs and radiation, respectively. Cancer immunotherapy essentially involves treatment and/or prevention with vaccines in the form of peptide vaccines (T and B cell epitopes), DNA vaccines and vaccination using whole tumor cells, dendritic cells, viral vectors, antibodies and adoptive transfer of T cells to harness the body's own immune system towards the targeting of cancer cells for destruction. Given the time, cost and labor involved in the vaccine discovery and development, researchers have evinced interest in the novel field of immunoinformatics to cut down the escalation of these critical resources. Immunoinformatics is a relatively new buzzword in the scientific circuit that is showing its potential and delivering on its promise in expediting the development of effective cancer immunotherapeutic agents. This review attempts to present a holistic picture of our race against cancer and time using the science and technology of immunoinformatics and molecular modeling in T cell epitope-based cancer immunotherapy. It also attempts to showcase some problem areas as well as novel ones waiting to be explored where development of novel immunoinformatics tools and simulations in the context of cancer immunotherapy would be highly welcome.
Collapse
Affiliation(s)
- Seema Mishra
- National Institute of Biologicals, Ministry of Health and Family Welfare, A-32 Sector 62, Noida, U. P., India.
| | | |
Collapse
|
11
|
Bibert S, Aebischer D, Desgranges F, Roy S, Schaer D, Kharoubi-Hess S, Horisberger JD, Geering K. A link between FXYD3 (Mat-8)-mediated Na,K-ATPase regulation and differentiation of Caco-2 intestinal epithelial cells. Mol Biol Cell 2008; 20:1132-40. [PMID: 19109419 DOI: 10.1091/mbc.e08-10-0999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Department of Pharmacology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gannon PO, Koumakpayi IH, Le Page C, Karakiewicz PI, Mes-Masson AM, Saad F. Ebp1 expression in benign and malignant prostate. Cancer Cell Int 2008; 8:18. [PMID: 19025630 PMCID: PMC2614409 DOI: 10.1186/1475-2867-8-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/24/2008] [Indexed: 01/22/2023] Open
Abstract
Background ErbB3-binding protein 1 (Ebp1) is a member of the PA2G4 family of proliferation-regulated proteins that is expressed in multiple malignant and non-malignant cells. ErbB3 and other members of the EGFR family have been implicated in cancer progression, it however remains unknown whether Ebp1 participate in prostate cancer progression in vivo. Therefore, the present study examines Ebp1 expression in cancerous and non-cancerous prostates tissues. Ebp1 expression was also correlated to known Ebp1 regulated proteins (Androgen receptor (AR), Cyclin D1 & ErbB3) and the proliferation marker Ki67. Furthermore we evaluated whether Ebp1 expression correlated with biochemical recurrence (BCR) following radical prostatectomy. Methods The expression of Ebp1, AR, Cyclin D1, ErbB3 and Ki67 were evaluated by immunohistochemistry using three separate tissue micro-arrays containing normal prostate tissues, non-cancerous tissue adjacent to the primary tumor, hormone-sensitive and hormone-refractory cancerous tissues. Multivariate COX regression analysis was performed with four clinical parameters in order to correlate Ebp1 expression with PCa progression. Results The expression of Ebp1 significantly increased with the progression from normal to hormone sensitive and to hormone refractory PCa. Furthermore, we observed strong correlation between Ebp1 expression and the nuclear expression of AR, Cyclin D1 and ErbB3 in both normal adjacent and cancer tissues. The expression of AR, Cyclin D1 and ErbB3 in normal adjacent tissues correlated with PSA relapse, whereas Ebp1 on its own did not significantly predict PSA relapse. Finally, in a multivariate analysis with a base clinical model (Gleason, Pre-op PSA, surgical margins and P-stage) we identified the multi-marker combination of Ebp1+/Cyclin D1- as an independent predictor of PSA relapse with a hazard ratio of 4.79. Conclusion Although not related to disease recurrence, this is the first in vivo study to report that Ebp1 expression correlates with PCa progression.
Collapse
Affiliation(s)
- Philippe O Gannon
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM) and Institut du cancer de Montréal. 1560 rue Sherbrooke East, Montreal, Quebec, Canada
| | - Ismaël Hervé Koumakpayi
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM) and Institut du cancer de Montréal. 1560 rue Sherbrooke East, Montreal, Quebec, Canada
| | - Cécile Le Page
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM) and Institut du cancer de Montréal. 1560 rue Sherbrooke East, Montreal, Quebec, Canada
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit & Department of Surgery, Hôpital St-Luc (CHUM), 1058 rue St-Denis, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM) and Institut du cancer de Montréal. 1560 rue Sherbrooke East, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Fred Saad
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM) and Institut du cancer de Montréal. 1560 rue Sherbrooke East, Montreal, Quebec, Canada.,Cancer Prognostics and Health Outcomes Unit & Department of Surgery, Hôpital St-Luc (CHUM), 1058 rue St-Denis, Montreal, Quebec, Canada.,Department of Surgery, CHUM, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Zhang Y, Linn D, Liu Z, Melamed J, Tavora F, Young CY, Burger AM, Hamburger AW. EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance. Mol Cancer Ther 2008; 7:3176-86. [PMID: 18852121 DOI: 10.1158/1535-7163.mct-08-0526] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of the androgen receptor (AR) by the ErbB2/ErbB3 heterodimer contributes to the development of hormone resistance in prostate cancer. EBP1, an ErbB3-binding protein, acts as an AR corepressor. As EBP1 is decreased in preclinical models of hormone-refractory prostate cancer, we studied the expression of EBP1 in human prostate cancer. We found that the expression of the EBP1 gene was significantly decreased in prostate cancer tissues compared with benign prostate at both mRNA and protein levels. Restoration of EBP1 expression in the hormone-refractory LNCaP C81 cell line led to an amelioration of the androgen-independent phenotype based on established biological criteria and a reduction in the expression of a cohort of AR target genes. The ability of the ErbB3 ligand heregulin (HRG) to stimulate growth and AKT phosphorylation of hormone-refractory prostate cancer cells was abolished. Abrogation of EBP1 expression by short hairpin RNA in hormone-dependent LNCaP cells, which undergo apoptosis in response to HRG, resulted in HRG-stimulated cell growth. Restoration of EBP1 expression decreased the tumorigenicity of C81 xenografts in female mice, whereas elimination of EBP1 expression enhanced the ability of LNCaP cells to grow in female mice. Our data support a role for EBP1 in the development of hormone-refractory prostate cancer via inhibition of both AR- and HRG-stimulated growth and present a novel strategy for treating androgen-refractory prostate cancer.
Collapse
Affiliation(s)
- Yuexing Zhang
- Greenebaum Cancer Center, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Looi KS, Nakayasu ES, Diaz RAD, Tan EM, Almeida IC, Zhang JY. Using proteomic approach to identify tumor-associated antigens as markers in hepatocellular carcinoma. J Proteome Res 2008; 7:4004-12. [PMID: 18672925 DOI: 10.1021/pr800273h] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many studies have demonstrated that intracellular proteins, which are involved in carcinogenesis, can provoke autoantibody responses. Therefore, autoantibodies can be used clinically for cancer detection and for proteomic analysis in identification of tumor-associated antigens (TAAs) that are potentially involved in malignant transformation. Liver cancer, especially hepatocellular carcinoma (HCC), is one of the most common tumors in the world. The majority of people with HCC will die within 1 year of its detection. This high case fatality rate can partially be attributed to a lack of diagnostic methods that allow early detection. In the present study, sera from 20 patients with HCC, 30 patients with chronic hepatitis (CH), and 30 patients with liver cirrhosis (LC) as well as sera from 10 normal individuals were used in a proteomic approach to identify HCC-related TAAs. Thirty-four immunoreactive protein spots were excised from the two-dimensional gel electrophoresis (2DE), digested with trypsin, and subsequently analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of 34 immunoreactive protein spots, 28 were identified. Seventeen of them were not only reactive with serum antibodies in HCC but also with antibodies in pre-HCC conditions, and 11 were only reactive with serum antibodies in HCC but not with antibodies in pre-HCC conditions. In the subsequent analysis, two representative proteins, HSP60 and HSP70, were selected as examples for the validation purpose. The results from immunoassay were consistent with the data from proteomic analysis, supporting our hypothesis that proteins identified with autoantibodies that have been present in precancer conditions may be not appropriate to use as TAA markers in cancer detection.
Collapse
Affiliation(s)
- Kok Sun Looi
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | | | | | |
Collapse
|