1
|
The effect of Ethanolic extract of Indonesian propolis on endothelial dysfunction and Multi Organ dysfunction syndrome in anthrax animal model. Saudi J Biol Sci 2022; 29:1118-1124. [PMID: 35197781 PMCID: PMC8847911 DOI: 10.1016/j.sjbs.2021.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/01/2022] Open
|
2
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Qiao Z, Hongjiao D, Xiaodong L. Network analysis of the effects of long non-coding RNAs in artemisinin treatment of atherosclerosis in APOE -/- mice. Arch Med Sci 2021; 20:967-976. [PMID: 39050164 PMCID: PMC11264094 DOI: 10.5114/aoms/118378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/22/2020] [Indexed: 07/27/2024] Open
Abstract
Introduction Atherosclerosis has become a worldwide medical burden. Our previous studies have shown that artemisinin (ART) had the capability to reduce atherosclerosis. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are involved in the development of atherosclerosis. However, whether lncRNAs might participate in the mechanism through which artemisinin mitigates atherosclerosis has not been reported. Material and methods Eight-week-old apolipoprotein E deficient (APOE-/-) mice were divided into two groups, one of which was treated with artemisinin. Red oil O staining was used to measure the sizes of the atherosclerotic lesions. We conducted deep sequencing to investigate lncRNA profiles in the aorta tissue in high-fat diet fed APOE knockdown mice with and without artemisinin treatment. CeRNA network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed through bioinformatics analysis. RT-PCR was used to validate the differentially expressed lncRNAs. Results A total of 102 lncRNAs and 4,630 mRNAs were differentially expressed (p < 0.05) between the artemisinin treatment group and atherosclerosis model group. KEGG and GO analyses indicated that the categories metabolic process, specific amino acid degradation and PI3K-Akt signaling pathway are involved in the effects of artemisinin treatment in atherosclerosis (q < 0.05). LncRNA ENSMUST00000099676.4, ENSMUST00000143673.1, ENSMUST00000070085.5 and ENSMUST00000224554 might be engaged in the treatment mechanism through which artemisinin alleviates atherosclerosis. Conclusions These findings indicated the possible mechanism and therapeutic role of lncRNAs in artemisinin treatment of atherosclerosis and provided a theoretical basis for the future application of artemisinin in patients with atherosclerosis.
Collapse
Affiliation(s)
- Zhao Qiao
- Department of Cardiology, Shenjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Du Hongjiao
- Department of Cardiology, Shenjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li Xiaodong
- Department of Cardiology, Shenjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Fan X, Chen X, Feng Q, Peng K, Wu Q, Passerini AG, Simon SI, Sun C. Downregulation of GATA6 in mTOR-inhibited human aortic endothelial cells: effects on TNF-α-induced VCAM-1 expression and monocytic cell adhesion. Am J Physiol Heart Circ Physiol 2019; 316:H408-H420. [PMID: 30462552 PMCID: PMC6397389 DOI: 10.1152/ajpheart.00411.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023]
Abstract
Increased expression of vascular cell adhesion molecule 1 (VCAM-1) on the aortic endothelium is an early marker of atherogenesis, promoted in part by elevated levels of inflammatory cytokines such as TNF-α. Mammalian target of rapamycin (mTOR) is a ubiquitous signaling molecule that has been considered to contribute to diverse cellular processes through mTOR complex 1 (mTORC1) or complex 2 (mTORC2). This study aimed to elucidate the role of mTOR signaling in TNF-α-induced VCAM-1 expression by the arterial endothelium. Primary human aortic endothelial cells (HAECs) were treated with low-dose (0.1 ng/ml) TNF-α, and VCAM-1 expression was measured by real-time quantitative PCR, Western blot analysis, and flow cytometry. Inhibition of mTOR through siRNA-mediated depletion or treatment with chemical inhibitors rapamycin or torin 1 suppressed VCAM1 transcription, which translated to inhibition of VCAM-1 surface expression by HAECs and concomitant decreased adhesion of monocytes. A promoter luciferase assay and chromatin immunoprecipitation indicated that mTOR regulated VCAM1 transcription through a mechanism involving transcription factor GATA6. Activation of PKC-α and an increase in miR-200a-3p expression, caused by mTOR inhibition but not disruption of mTORC1 or mTORC2 singly or together, decreased TNF-α-induced GATA6 expression and its enrichment at the VCAM1 promoter. In conclusion, mTOR inhibition activates PKC-α independently of disruption of mTORC1 and/or mTORC2, which challenges the conventional wisdom regarding mTOR signaling. Moreover, mTOR signals through transcriptional and posttranscriptional mechanisms to elicit maximal cytokine-induced endothelial inflammation that precedes atherosclerosis. NEW & NOTEWORTHY Both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 contribute to PKC-α activation in the human aortic endothelium. Inhibition of mTOR is not equivalent to disruption of mTORC1 and/or mTORC2 in affecting human aortic endothelial cell signaling. Specifically, inhibition of mTOR causes PKC-α activation and miR-200a-3p upregulation, which independently suppresses TNF-α-induced transcription factor GATA6 expression and subsequently inhibits VCAM-1 expression and monocytic cell adhesion onto the aortic endothelium.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University , Nanjing , China
| | - Xiaolin Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University , Nanjing , China
| | - Qi Feng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University , Nanjing , China
| | - Kai Peng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University , Nanjing , China
| | - Qianqian Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University , Nanjing , China
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California , Davis, California
| | - Scott I Simon
- Department of Biomedical Engineering, University of California , Davis, California
| | - ChongXiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University , Nanjing , China
| |
Collapse
|
5
|
Qin X, Ni X, Mao X, Ying H, Du Q. Cholestatic pregnancy is associated with reduced VCAM1 expression in vascular endothelial cell of placenta. Reprod Toxicol 2017; 74:23-31. [PMID: 28851649 DOI: 10.1016/j.reprotox.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disease which is closely correlated with abnormal placental vascular formation and deficient vascular maturation. This study intends to explore the role of VCAM-1 in the vascular formation in the placenta of ICP. METHODS Patients with ICP or healthy puerperant were respectively used as ICP group and control group. The umbilical vein endothelial cell Eahy926 was selected as in vitro cell model. Immunohistochemistry and western blot were used for analysis of protein expression. MRNA expression was assayed by real time-PCR and the cell viability was detected by the MTT method. Cell proliferation and cell apoptosis were probed by the flow cytometer. Luciferase report assay was used for the interaction analysis between the microRNA and the 3'UTR of gene VCAM-1. RESULTS Immunohistochemistry indicated that the expression of VCAM-1 was reduced in the ICP group compared to that in control group. The cell culture and cell behavior assays indicated that the TCA (Taurocholic acid) could reduce the expression of gene VCAM-1 and inhibit the cell proliferation and enhance the cell apoptosis. In order to probe its reduction mechanism, the potential microRNAs were detected and gene VCAM-1 was confirmed to be the target of miR-590-3p by western blot and luciferase report assays. CONCLUSIONS The expression pattern of gene VCAM-1 was suppressed by TCA through miR-590-3p, which participated in the regulation of cell growth, cell proliferation and cell apoptosis.
Collapse
Affiliation(s)
- XueWei Qin
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - XiaoTian Ni
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - XiaoYuan Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| | - QiaoLing Du
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| |
Collapse
|
6
|
Cai H, Yao Z, Li W. IRF-5 accelerates leukocyte adhesion to endothelial cells in ischemia-reperfusion injury through regulating the transcription of VCAM-1. Biochem Biophys Res Commun 2017; 492:192-198. [PMID: 28818665 DOI: 10.1016/j.bbrc.2017.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Ischemia-reperfusion injury (IRI) has been implicated in many pathological conditions, including cardiovascular diseases. Adhesion of leukocytes to the surface of endothelial cells has been considered as one of the principle steps in the pathological cascade of inflammatory tissue damage during IRI. The role of the transcriptional factor interferon regulatory factor-5 (IRF-5) in endothelial physiology remains unknown. Here, we report that IRF-5 is expressed in human umbilical vein endothelial cells (HUVECs) and is rapidly upregulated in response to IRI, mediated by the JAK2/STAT3 pathway. Importantly, IRF-5 is involved in IRI-induced attachment of THP-1 leukocytes to HUVECs. Mechanistically, it was found that IRF-5 targeted the expression of vascular cell adhesion molecule 1 (VCAM-1) at the transcriptional level by binding to its promoter. In conclusion, we identify IRF-5 as a new regulator and thus a therapeutic target in IRI-driven cardiovascular pathologies.
Collapse
Affiliation(s)
- Hongbin Cai
- Department of Cardiology, Tianjin People's Hospital, Tianjin, 300120, China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin People's Hospital, Tianjin, 300120, China.
| | - Wenting Li
- Department of Cardiology, Tianjin People's Hospital, Tianjin, 300120, China
| |
Collapse
|
7
|
Yan R, van Meurs M, Popa ER, Jongman RM, Zwiers PJ, Niemarkt AE, Kuiper T, Kamps JA, Heeringa P, Zijlstra JG, Molema G, Moser J. Endothelial Interferon Regulatory Factor 1 Regulates Lipopolysaccharide-Induced VCAM-1 Expression Independent of NFκB. J Innate Immun 2017; 9:546-560. [PMID: 28658674 DOI: 10.1159/000477211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a severe systemic inflammatory response to infection. Endothelial activation and dysfunction play a critical role in the pathophysiology of sepsis and represent an important therapeutic target to reduce sepsis mortality. Interferon regulatory factor 1 (IRF-1) was recently identified as a downstream target of TNF-α-mediated signal transduction in endothelial cells. The aim of this study was to explore the importance of IRF-1 as a regulator of lipopolysaccharide (LPS)-induced endothelial proinflammatory activation. We found that renal IRF-1 was upregulated by LPS in vivo as well as in LPS-stimulated endothelial cells in vitro. Furthermore, we identified intracellular retinoic acid inducible gene-I (RIG-I) as a regulator of LPS-mediated IRF-1 induction. IRF-1 depletion specifically resulted in diminished induction of VCAM-1 in response to LPS, but not of E-selectin or ICAM-1, which was independent of NFκB signaling. When both IRF-1 and the RIG-I adapter protein mitochondrial antiviral signaling (MAVS) were absent, VCAM-1 induction was not additionally inhibited, suggesting that MAVS and IRF-1 reside in the same signaling pathway. Surprisingly, E-selectin and IL-6 induction were no longer inhibited by MAVS knockdown when IRF-1 was also absent, revealing a redundant endothelial activation pathway. In summary, we report an IRF-1-mediated proinflammatory signaling pathway that specifically regulates LPS-mediated VCAM-1 expression, independent of NFκB.
Collapse
Affiliation(s)
- Rui Yan
- Medical Biology Section, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Z, Yang C, Dai X, Ao Y, Li Y. Inhibitory effect of trans-caryophyllene (TC) on leukocyte-endothelial attachment. Toxicol Appl Pharmacol 2017. [PMID: 28624443 DOI: 10.1016/j.taap.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
trans-Caryophyllene (TC) is a major component found in the essential oils of many spices and foods/medicinal plants. It is a natural sesquiterpene and has been the subject of numerous studies. However, the effects of TC on vascular inflammation remain unknown. In this study, we reported that TC treatment in human umbilical vein endothelial cells (HUVECs) prevented attachment of monocytic leukemia cell line THP-1 cells to endothelial cells. In addition, in vivo results indicate that TC inhibited macrophage infiltration to the aortic surface and reduced total serum levels of cholesterol and triglycerides. Importantly, administration of TC could inhibit the induction of vascular cell adhesion molecule-1 (VCAM-1) both in vitro and in vivo. Notably, our data indicate that the inhibitory effects of TC on the expression of VCAM-1 are mediated by the JAK2/STAT1/IRF-1 pathway. TC is a specific agonist of the type 2 cannabinoid receptor (CB2R). Importantly, we further verified that the inhibitory effects of TC on the expression of IRF-1 and VCAM-1 are dependent on activation of CB2R. Inhibition of CB2R by either specific inhibitors or RNA interference abolished the inhibitory effects of TC on the expression of IRF-1 and VCAM-1. Our results suggest that TC might have a capacity to suppress the development of atherosclerosis.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chunfeng Yang
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xinlun Dai
- Clinical Medical College, The First Affiliated Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yu Ao
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yumei Li
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
9
|
Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 2014; 5:213-8. [PMID: 24193365 PMCID: PMC3916377 DOI: 10.4161/viru.27024] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Bacterial sepsis is a major cause of fatality worldwide. Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. These bacteria produce a range of virulence factors that enable them to escape the immune defenses and disseminate to remote organs, and toxins that interact with host cells via specific receptors on the cell surface and trigger a dysregulated immune response. Over the past decade, our understanding of toxins has markedly improved, allowing for new therapeutic strategies to be developed. This review summarizes some of these toxins and their role in sepsis.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
10
|
D'Agnillo F, Williams MC, Moayeri M, Warfel JM. Anthrax lethal toxin downregulates claudin-5 expression in human endothelial tight junctions. PLoS One 2013; 8:e62576. [PMID: 23626836 PMCID: PMC3633853 DOI: 10.1371/journal.pone.0062576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/22/2013] [Indexed: 01/22/2023] Open
Abstract
Vascular leakage pathologies such as pleural effusion and hemorrhage are hallmarks of anthrax pathogenesis. We previously reported that anthrax lethal toxin (LT), the major virulence factor of anthrax, reduces barrier function in cultured primary human microvascular endothelial cells. Here, we show that LT-induced barrier dysfunction is accompanied by the reduced expression of the endothelial tight junction (TJ) protein claudin-5 but no change in the expression of other TJ components occludin, ZO-1, ZO-2, or the adherens junction (AJ) protein VE-cadherin. The downregulation of claudin-5 correlated temporally and dose-dependently with the reduction of transendothelial electrical resistance. LT-induced loss of claudin-5 was independent of cell death and preceded the appearance of actin stress fibers and altered AJ morphology. Pharmacological inhibition of MEK-1/2, two kinases that are proteolytically inactivated by LT, showed a similar reduction in claudin-5 expression. We found that LT reduced claudin-5 mRNA levels but did not accelerate the rate of claudin-5 degradation. Mice challenged with LT also showed significant reduction in claudin-5 expression. Together, these findings support a possible role for LT disruption of endothelial TJs in the vascular leakage pathologies of anthrax.
Collapse
Affiliation(s)
- Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
11
|
Van Rijssel J, Timmerman I, Van Alphen FPJ, Hoogenboezem M, Korchynskyi O, Geerts D, Geissler J, Reedquist KA, Niessen HWM, Van Buul JD. The Rho-GEF Trio regulates a novel pro-inflammatory pathway through the transcription factor Ets2. Biol Open 2013; 2:569-79. [PMID: 23789107 PMCID: PMC3683159 DOI: 10.1242/bio.20134382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/20/2013] [Indexed: 01/08/2023] Open
Abstract
Inflammation is characterized by endothelium that highly expresses numerous adhesion molecules to trigger leukocyte extravasation. Central to this event is increased gene transcription. Small Rho-GTPases not only control the actin cytoskeleton, but are also implicated in gene regulation. However, in inflammation, it is not clear how this is regulated. Here, we show that the guanine-nucleotide exchange factor Trio expression is increased upon inflammatory stimuli in endothelium. Additionally, increased Trio expression was found in the vessel wall of rheumatoid arthritis patients. Trio silencing impaired VCAM-1 expression. Finally, we excluded that Trio-controlled VCAM-1 expression used the classical NFκB or MAP-kinase pathways, but rather acts on the transcriptional level by increasing phosphorylation and nuclear translocalization of Ets2. These data implicate Trio in regulating inflammation and provide novel targets for therapeutic purposes to treat inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jos Van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam, 1066CX , The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sun C, Alkhoury K, Wang YI, Foster GA, Radecke CE, Tam K, Edwards CM, Facciotti MT, Armstrong EJ, Knowlton AA, Newman JW, Passerini AG, Simon SI. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal. Circ Res 2012; 111:1054-64. [PMID: 22874466 DOI: 10.1161/circresaha.112.270314] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE A high-fat diet accompanied by hypertriglyceridemia increases an individual's risk for development of atherosclerosis. An early event in this process is monocyte recruitment through binding to vascular cell adhesion molecule 1 (VCAM-1) upregulated on inflamed arterial endothelium. Diets high in polyunsaturated fatty acids (PUFAs) may provide athero-protection by ameliorating this effect. OBJECTIVE We investigated the acute regulation of VCAM-1 expression in human aortic endothelial cells (HAEC) in response to triglyceride-rich lipoproteins (TGRL) isolated from subjects after consumption of a high-fat meal. METHODS AND RESULTS Postprandial TGRL isolated from 38 subjects were categorized as proatherogenic or antiatherogenic according to their capacity to alter the inflammatory response of HAEC. Proatherogenic TGRL increased expression of VCAM-1, intercellular adhesion molecule 1 (ICAM-1), and E-selectin by ≈20% compared with stimulation with tumor necrosis factor-α alone, whereas antiatherogenic TGRL decreased VCAM-1 expression by ≈20% while still upregulating ICAM-1. The relative atherogenicity of TGRL positively correlated with particle density of TG, apolipoprotein (Apo)CIII, ApoE, and cholesterol. Ω3-PUFA mimicked the effect of antiatherogenic TGRL by downregulating VCAM-1 expression. TGRL exerted this differential regulation of VCAM-1 by reciprocally modulating expression and activity of the transcription factor interferon regulatory factor 1 (IRF-1) and expression of microRNA 126 (miR-126). Overexpression or silencing of IRF-1 or miR-126 expression recapitulated the proatherogenic or antiatherogenic regulation of VCAM-1. CONCLUSIONS In response to a high-fat meal, TGRL bias the inflammatory response of endothelium via transcriptional and posttranscriptional editing of VCAM-1. Subjects with an anti-inflammatory response to a meal produced TGRL that was enriched in nonesterified fatty acids, decreased IRF-1 expression, increased miR-126 activity, and diminished monocyte arrest.
Collapse
Affiliation(s)
- Chongxiu Sun
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Song X, Zhang G, Sun A, Guo J, Tian Z, Wang H, Liu Y. Scorpion venom component III inhibits cell proliferation by modulating NF-κB activation in human leukemia cells. Exp Ther Med 2012; 4:146-150. [PMID: 23060939 DOI: 10.3892/etm.2012.548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/03/2012] [Indexed: 12/23/2022] Open
Abstract
Scorpion venom contains various groups of compounds that exhibit anticancer activity against a variety of malignancies through a poorly understood mechanism. While the aberrant activation of nuclear factor κB (NF-κB) has been linked with hematopoietic malignancies, we hypothesized that scorpion venom mediates its effects by modulating the NF-κB signaling pathway. In the present study, we examined the effects of scorpion venom component III (SVCIII) on the human leukemia cell lines THP-1 and Jurkat and focused on the NF-κB signaling pathway. Our results showed that SVCIII inhibited cell proliferation, caused cell cycle arrest at G1 phase and inhibited the expression of cell cycle regulatory protein cyclin D1 in a dose-dependent manner in THP-1 and Jurkat cells. SVCIII also suppressed the constitutive NF-κB activation through inhibition of the phosphorylation and degradation of IκBα. NF-κB luciferase reporter activity was also inhibited by SVCIII. Our data suggest that SVCIII, a natural compound, may exert its antiproliferative effects by inhibiting the activation of NF-κB and, thus, has potential use in the treatment of hematopoietic malignancies, alone or in combination with other agents.
Collapse
Affiliation(s)
- Xiangfeng Song
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou; ; Department of Immunology, Xinxiang Medical University, Xinxiang
| | | | | | | | | | | | | |
Collapse
|
14
|
Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Piconese S. Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells. Eur J Immunol 2012; 41:3615-26. [PMID: 22229156 DOI: 10.1002/eji.201141700] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Treg cells maintain the tumor microenvironment in an immunosuppressive state preventing an effective anti-tumor immune response. A possible strategy to overcome Treg-cell suppression focuses on OX40, a costimulatory molecule expressed constitutively by Treg cells while being induced in activated effector T cells. OX40 stimulation, by the agonist mAb OX86, inhibits Treg-cell suppression and boosts effector T-cell activation. Here we uncover the mechanisms underlying the therapeutic activity of OX86 treatment dissecting its distinct effects on Treg and on effector memory T (Tem) cells, the most abundant CD4+ populations strongly expressing OX40 at the tumor site. In response to OX86, tumor-infiltrating Treg cells produced significantly less interleukin 10 (IL-10), possibly in relation to a decrease in the transcription factor interferon regulatory factor 1 (IRF1). Tem cells responded to OX86 by upregulating surface CD40L expression, providing a licensing signal to DCs. The CD40L/CD40 axis was required for Tem-cell-mediated in vitro DC maturation and in vivo DC migration. Accordingly, OX86 treatment was no longer therapeutic in CD40 KO mice. In conclusion, following OX40 stimulation, blockade of Treg-cell suppression and enhancement of the Tem-cell adjuvant effect both concurred to free DCs from immunosuppression and activate the immune response against the tumor.
Collapse
Affiliation(s)
- Alessia Burocchi
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | |
Collapse
|
15
|
Nizamutdinova IT, Kim YM, Lee JH, Chang KC, Kim HJ. MKP-7, a negative regulator of JNK, regulates VCAM-1 expression through IRF-1. Cell Signal 2012; 24:866-72. [DOI: 10.1016/j.cellsig.2011.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/24/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
16
|
Development of an in vitro potency assay for anti-anthrax lethal toxin neutralizing antibodies. Toxins (Basel) 2012; 4:28-41. [PMID: 22347621 PMCID: PMC3277096 DOI: 10.3390/toxins4010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 12/23/2011] [Accepted: 01/17/2012] [Indexed: 11/16/2022] Open
Abstract
Lethal toxin (LT) of Bacillus anthracis reduces the production of a number of inflammatory mediators, including transcription factors, chemokines and cytokines in various human cell lines, leading to down-regulation of the host inflammatory response. Previously we showed that the reduction of interleukin-8 (IL-8) is a sensitive marker of LT-mediated intoxication in human neutrophil-like NB-4 cells and that IL-8 levels are restored to normality when therapeutic monoclonal antibodies (mAb) with toxin-neutralising (TN) activity are added. We used this information to develop cell-based assays that examine the effects of TN therapeutic mAbs designed to treat LT intoxication and here we extend these findings. We present an in vitro assay based on human endothelial cell line HUVEC jr2, which measures the TN activity of therapeutic anti-LT mAbs using IL-8 as a marker for intoxication. HUVEC jr2 cells have the advantage over NB-4 cells that they are adherent, do not require a differentiation step and can be used in a microtitre plate format and therefore can facilitate high throughput analysis. This human cell-based assay provides a valid alternative to the mouse macrophage assay as it is a more biologically relevant model of the effects of toxin-neutralising antibodies in human infection.
Collapse
|
17
|
Selectins and Associated Adhesion Proteins in Inflammatory disorders. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121831 DOI: 10.1007/978-3-7091-1065-2_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is defined as the normal response of living tissue to injury or infection. It is important to emphasize two components of this definition. First, that inflammation is a normal response and, as such, is expected to occur when tissue is damaged. Infact, if injured tissue does not exhibit signs of inflammation this would be considered abnormal and wounds and infections would never heal without inflammation. Secondly, inflammation occurs in living tissue, hence there is need for an adequate blood supply to the tissues in order to exhibit an inflammatory response. The inflammatory response may be triggered by mechanical injury, chemical toxins, and invasion by microorganisms, and hypersensitivity reactions. Three major events occur during the inflammatory response: the blood supply to the affected area is increased substantially, capillary permeability is increased, and leucocytes migrate from the capillary vessels into the surrounding interstitial spaces to the site of inflammation or injury. The inflammatory response represents a complex biological and biochemical process involving cells of the immune system and a plethora of biological mediators. Cell-to-cell communication molecules such as cytokines play an extremely important role in mediating the process of inflammation. Inflammation and platelet activation are critical phenomena in the setting of acute coronary syndromes. An extensive exposition of this complex phenomenon is beyond the scope of this article (Rankin 2004).
Collapse
|
18
|
Warfel JM, D’Agnillo F. Anthrax lethal toxin-mediated disruption of endothelial VE-cadherin is attenuated by inhibition of the Rho-associated kinase pathway. Toxins (Basel) 2011; 3:1278-93. [PMID: 22069696 PMCID: PMC3210462 DOI: 10.3390/toxins3101278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/01/2011] [Accepted: 10/09/2011] [Indexed: 01/01/2023] Open
Abstract
Systemic anthrax disease is characterized by vascular leakage pathologies. We previously reported that anthrax lethal toxin (LT) induces human endothelial barrier dysfunction in a cell death-independent manner with actin stress fiber formation and disruption of adherens junctions (AJs). In the present study, we further characterize the molecular changes in the AJ complex and investigate whether AJ structure and barrier function can be preserved by modulating key cytoskeletal signaling pathways. Here, we show that LT reduces total VE-cadherin protein and gene expression but the expression of the key linker protein beta-catenin remained unchanged. The changes in VE-cadherin expression correlated temporally with the appearance of actin stress fibers and a two-fold increase in phosphorylation of the stress fiber-associated protein myosin light chain (p-MLC) and cleavage of Rho-associated kinase-1 (ROCK-1). Co-treatment with ROCK inhibitors (H-1152 and Y27632), but not an inhibitor of MLC kinase (ML-7), blocked LT-induced p-MLC enhancement and stress fiber formation. This was accompanied by the restoration of VE-cadherin expression and membrane localization, and attenuation of the LT-induced increase in monolayer permeability to albumin. Together, these findings suggest the ROCK pathway may be a relevant target for countering LT-mediated endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Jason M. Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, MD 20892, USA;
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, MD 20892, USA;
| |
Collapse
|
19
|
Roh HC, Yoo DY, Ko SH, Kim YJ, Kim JM. Bacteroides fragilis enterotoxin upregulates intercellular adhesion molecule-1 in endothelial cells via an aldose reductase-, MAPK-, and NF-κB-dependent pathway, leading to monocyte adhesion to endothelial cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1931-41. [PMID: 21724992 DOI: 10.4049/jimmunol.1101226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) produces a ∼ 20-kDa heat-labile enterotoxin (BFT) that plays an essential role in mucosal inflammation. Although a variety of inflammatory cells is found at ETBF-infected sites, little is known about leukocyte adhesion in response to BFT stimulation. We investigated whether BFT affected the expression of ICAM-1 and monocytic adhesion to endothelial cells (ECs). Stimulation of HUVECs and rat aortic ECs with BFT resulted in the induction of ICAM-1 expression. Upregulation of ICAM-1 was dependent on the activation of IκB kinase (IKK) and NF-κB signaling. In contrast, suppression of AP-1 did not affect ICAM-1 expression in BFT-stimulated cells. Suppression of NF-κB activity in HUVECs significantly reduced monocytic adhesion, indicating that ICAM-1 expression is indispensable for BFT-induced adhesion of monocytes to the endothelium. Inhibition of JNK resulted in a significant attenuation of BFT-induced ICAM-1 expression in ECs. Moreover, inhibition of aldose reductase significantly reduced JNK-dependent IKK/NF-κB activation, ICAM-1 expression, and adhesion of monocytes to HUVECs. These results suggest that a signaling pathway involving aldose reductase, JNK, IKK, and NF-κB is required for ICAM-1 induction in ECs exposed to BFT, and may be involved in the leukocyte-adhesion cascade following infection with ETBF.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Department of Microbiology, Hanyang University College of Medicine, Seoul 133-791, Korea
| | | | | | | | | |
Collapse
|
20
|
Xie T, Auth RD, Frucht DM. The effects of anthrax lethal toxin on host barrier function. Toxins (Basel) 2011; 3:591-607. [PMID: 22069727 PMCID: PMC3202839 DOI: 10.3390/toxins3060591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 01/08/2023] Open
Abstract
The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Tao Xie
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
21
|
Dozmorov M, Wu W, Chakrabarty K, Booth JL, Hurst RE, Coggeshall KM, Metcalf JP. Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-alpha and NF-kappab are key components of the innate immune response to the pathogen. BMC Infect Dis 2009; 9:152. [PMID: 19744333 PMCID: PMC2752459 DOI: 10.1186/1471-2334-9-152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM) plays a key role in lung innate immune responses, studying the HAM response to B. anthracis is important in understanding the pathogenesis of the pulmonary form of this disease. METHODS In this paper, the transcriptional profile of B. anthracis spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis. RESULTS The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis, the Promoter Analysis and Interaction Network Toolset (PAINT) and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-alpha, NF-kappaB and their ligands/receptors. In addition to TNF-alpha, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-kappaB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas. CONCLUSION The results demonstrate not only that TNF-alpha and NF-kappab are key components of the innate immune response to the pathogen, but also that a large part of the mechanisms by which the alveolar macrophage responds to B. anthracis are still unknown as many of the genes involved are poorly annotated.
Collapse
Affiliation(s)
- Mikhail Dozmorov
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Aspects Med 2009; 30:439-55. [PMID: 19638283 DOI: 10.1016/j.mam.2009.07.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/21/2022]
Abstract
Anthrax lethal toxin (LT) and edema toxin (ET) are the major virulence factors of anthrax and can replicate the lethality and symptoms associated with the disease. This review provides an overview of our current understanding of anthrax toxin effects in animal models and the cytotoxicity (necrosis and apoptosis) induced by LT in different cells. A brief reexamination of early historic findings on toxin in vivo effects in the context of our current knowledge is also presented.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 33, Room 1W20B, Bethesda, MD 20892, USA.
| | | |
Collapse
|
23
|
Warfel JM, D'Agnillo F. Anthrax lethal toxin enhances IkappaB kinase activation and differentially regulates pro-inflammatory genes in human endothelium. J Biol Chem 2009; 284:25761-71. [PMID: 19620708 DOI: 10.1074/jbc.m109.036970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anthrax lethal toxin (LT) was previously shown to enhance transcriptional activity of NF-kappaB in tumor necrosis factor-alpha-activated primary human endothelial cells. Here we show that this LT-mediated increase in NF-kappaB activation is associated with the enhanced degradation of the inhibitory proteins IkappaBalpha and IkappaBbeta but not IkappaBepsilon. Moreover, this was accompanied by enhanced activation of the IkappaB kinase complex (IKK), which is responsible for targeting IkappaB proteins for degradation. Importantly, LT enhancement of IkappaBalpha degradation was completely blocked by a selective IKKbeta inhibitor, whereas IkappaBbeta degradation was attenuated, suggesting a mechanistic link. Consistent with the above data, LT-cotreated cells show elevated phosphorylation of two IKK substrates, IkappaBalpha and p65, both of which were blocked by incubation with the IKKbeta inhibitor. Consistent with NF-kappaB activation, LT increased transcription of the NF-kappaB regulated gene CD40. Conversely, LT inhibited transcription of another NF-kappaB-regulated gene, CCL2. This inhibition was linked to the LT-mediated suppression of another CCL2-regulating transcription factor, AP-1 (activator protein-1). These data suggest that LT-mediated enhancement of NF-kappaB is IKK-dependent, but importantly, the net effect of LT on the transcription of proinflammatory genes is driven by the cumulative effect of LT on the particular set of transcription factors that regulate a given promoter. Together, these findings provide new mechanistic insight on how LT may disrupt the host response to anthrax.
Collapse
Affiliation(s)
- Jason M Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
24
|
Fletcher NF, Bexiga MG, Brayden DJ, Brankin B, Willett BJ, Hosie MJ, Jacque JM, Callanan JJ. Lymphocyte migration through the blood-brain barrier (BBB) in feline immunodeficiency virus infection is significantly influenced by the pre-existence of virus and tumour necrosis factor (TNF)-alpha within the central nervous system (CNS): studies using an in vitro feline BBB model. Neuropathol Appl Neurobiol 2009; 35:592-602. [PMID: 19486302 DOI: 10.1111/j.1365-2990.2009.01031.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS In human immunodeficiency virus infection, macrophage-tropic and lymphotropic viruses exist in the host. Central nervous system (CNS) infection is an early and ongoing event, important to understand when developing strategies to treat infection. Some knowledge exists on macrophage-tropic virus interactions with the blood-brain barrier (BBB), and the aim of this study was to investigate lymphotropic lentivirus interactions with the BBB. METHODS Interactions of the lymphotropic feline immunodeficiency virus (FIV) with an in vitro model of the feline BBB were evaluated in scenarios to mimic in vivo infections. RESULTS Cell-free FIV crossed the BBB in very low quantities, and in the presence of tumour necrosis factor (TNF)-alpha, BBB integrity was unaffected. However, cell-associated FIV readily crossed the BBB, but BBB integrity was not significantly altered. Transmigration of uninfected and infected lymphocytes increased in response to TNF-alpha, accompanied by a moderate disruption of barrier integrity and an upregulation of vascular cell adhesion molecule-1 rather than intercellular adhesion molecule-1. Significant enhancement of migration and disruption of BBB tight junctions occurred when infected cells and TNF-alpha were added to the brain side of the BBB and this enhancement was not mediated through additional TNF-alpha production. CONCLUSIONS Small quantities of virus in the brain together with TNF-alpha have the potential to stimulate greater cell and viral entry into the CNS and this is likely to involve important factors other than further TNF-alpha production. Lymphotropic lentivirus entry to the CNS is governed by many factors similar to macrophage-tropic strains.
Collapse
|
25
|
Kang Z, Webster Marketon JI, Johnson A, Sternberg EM. Bacillus anthracis lethal toxin represses MMTV promoter activity through transcription factors. J Mol Biol 2009; 389:595-605. [PMID: 19389405 DOI: 10.1016/j.jmb.2009.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 01/12/2023]
Abstract
We have recently shown that the anthrax lethal toxin (LeTx) selectively represses nuclear hormone receptors. In this study, we found that LeTx repressed the activation of the mouse mammary tumor virus promoter related to overexpression of the transcription factors hepatocyte nuclear factor 3, octamer-binding protein 1, and c-Jun. LeTx transcriptional repression was associated with a decrease in the protein levels of these transcription factors in a lethal factor protease activity-dependent manner. Early administration of LeTx antagonists partially or completely abolished the repressive effects of LeTx. In contrast to the rapid cleavage of mitogen-activated protein kinase kinases by LeTx, the degradation of these transcription factors occurred at a relatively late stage after LeTx treatment. In addition, LeTx repressed phorbol-12-myristate-13-acetate-induced mouse mammary tumor virus promoter activity and phorbol 12-myristate 13-acetate induction of endogenous c-Jun protein. Collectively, these findings suggest that transcription factors are intracellular targets of LeTx and expand our understanding of the molecular action of LeTx at a later stage of low-dose exposure.
Collapse
Affiliation(s)
- Zhigang Kang
- Section on Neuroendocrine Immunology and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, 5625 Fishers Lane, Room 4N13 (MSC 9401), Bethesda, MD 20892-9401, USA
| | | | | | | |
Collapse
|