1
|
Waters S, Lee S, Ariyanto I, Leary S, Munyard K, Gaudieri S, Irish A, Allcock RJN, Price P. Variants of HCMV UL18 Sequenced Directly from Clinical Specimens Associate with Antibody and T-Cell Responses to HCMV. Int J Mol Sci 2022; 23:12911. [PMID: 36361707 PMCID: PMC9658343 DOI: 10.3390/ijms232112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Around 80% of adults worldwide carry human cytomegaloviris (HCMV). The HCMV gene UL18 is a homolog of HLA class I genes and encodes a protein with high affinity for the NK and T-cell cytotoxicity inhibitor LIR-1. UL18 was deep sequenced from blood, saliva or urine from Indonesian people with HIV (PWH) (n = 28), Australian renal transplant recipients (RTR) (n = 21), healthy adults (n = 7) and neonates (n = 4). 95% of samples contained more than one variant of HCMV UL18, as defined by carriage of nonsynonymous variations. When aligned with immunological markers of the host's burden of HCMV, the S318N variation associated with high levels of antibody reactive with HCMV lysate in PWH over 12 months on antiretroviral therapy. The A107T variation associated with HCMV antibody levels and inflammatory biomarkers in PWH at early timepoints. Variants D32G, D248N, V250A and E252D aligned with elevated HCMV antibody levels in RTR, while M191K, E196Q and F165L were associated with HCMV-reactive T-cells and proportions of Vδ2- γδ T-cells-populations linked with high burdens of HCMV. We conclude that UL18 is a highly variable gene, where variation may alter the persistent burden of HCMV and/or the host response to that burden.
Collapse
Affiliation(s)
- Shelley Waters
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Silvia Lee
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands 6009, Australia
| | - Ibnu Ariyanto
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch 6150, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch 6150, Australia
- School of Human Sciences, University of Western Australia, Nedlands 6009, Australia
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashley Irish
- Department of Nephrology, Fiona Stanley Hospital, Murdoch 6150, Australia
| | - Richard J. N. Allcock
- School of Biomedical Sciences, University of Western Australia, Nedlands 6009, Australia
- PathWest Laboratory Medicine WA, Department of Diagnostic Genomics, Nedlands 6009, Australia
| | - Patricia Price
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
| |
Collapse
|
2
|
Scapolan O, Mazzarello AN, Bono M, Occhino M, Ogryzko V, Bestagno M, Scartezzini P, Bruno S, Fais F, Ghiotto F. A vector design that allows fast and convenient production of differently tagged proteins. Mol Biotechnol 2011; 52:16-25. [PMID: 22076571 DOI: 10.1007/s12033-011-9469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Recombinant-tagged proteins have a widespread use in experimental research as well as in clinical diagnostic and therapeutic approaches. Well-stocked sets of differently tagged variants of a same protein would be of great help. However, the construction of differently tagging vectors is a demanding task since cloning procedures need several tailored DNA inserts. In this study, we describe a novel vector system that allows a cost- and time-effective production of differently tagged variants of a same protein by using the same DNA fragment and a set of vectors each carrying a different tag. The design of these expression vectors is based on an intronic region that becomes functional upon cloning the insert sequence, splicing of which attaches a certain tag to the protein termini. This strategy allows for the cloning of the fragment that codes for the protein of interest, without any further modification, into different vectors, previously built and ready-to-use, each carrying a tag that will be joined to the protein. Proof of principle for our expression system, presented here, is shown through the production of a functional anti-GD2 Fab fragment tagged with biotin or polyhistidine, or a combination of both, followed by the demonstration of the functional competencies of both the protein and the tags.
Collapse
Affiliation(s)
- Omar Scapolan
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J Biomed Biotechnol 2011; 2011:724607. [PMID: 21765638 PMCID: PMC3134397 DOI: 10.1155/2011/724607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/28/2011] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells provide an initial host immune response to infection by many viral pathogens. Consequently, the viruses have evolved mechanisms to attenuate the host response, leading to improved viral fitness. One mechanism employed by members of the β-herpesvirus family, which includes the cytomegaloviruses, is to modulate the expression of cell surface ligands recognized by NK cell activation molecules. A novel set of cytomegalovirus (CMV) genes, exemplified by the mouse m145 family, encode molecules that have structural and functional features similar to those of host major histocompatibility-encoded (MHC) class I molecules, some of which are known to contribute to immune evasion. In this review, we explore the function, structure, and evolution of MHC-I-like molecules of the CMVs and speculate on the dynamic development of novel immunoevasive functions based on the MHC-I protein fold.
Collapse
|
4
|
Schleiss MR. Can we build it better? Using BAC genetics to engineer more effective cytomegalovirus vaccines. J Clin Invest 2010; 120:4192-7. [PMID: 21099107 DOI: 10.1172/jci45250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The magnitude and durability of immunity to human cytomegalovirus (HCMV) following natural infection is compromised by the presence of immune modulation genes that appear to promote evasion of host clearance mechanisms. Since immunity to HCMV offers limited protection, rational design of effective vaccines has been challenging. In this issue of the JCI, Slavuljica and colleagues employ techniques to genetically modify the highly related mouse CMV (MCMV), in the process generating a virus that was rapidly cleared by NK cells. The virus functioned as a safe and highly effective vaccine. Demonstration of the ability to engineer a safe and highly effective live virus vaccine in a relevant rodent model of CMV infection may open the door to clinical trials of safer and more immunogenic HCMV vaccines.
Collapse
Affiliation(s)
- Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Center for Infectious Diseases and Microbiology Translational Research, Minneapolis, Minnesota, USA.
| |
Collapse
|
5
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
6
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
7
|
Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci U S A 2008; 105:10095-100. [PMID: 18632577 DOI: 10.1073/pnas.0804551105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UL18 is a human cytomegalovirus class I MHC (MHCI) homolog that binds the host inhibitory receptor LIR-1 and the only known viral MHC homolog that presents peptides. The 2.2-A structure of a LIR-1/UL18/peptide complex reveals increased contacts and optimal surface complementarity in the LIR-1/UL18 interface compared with LIR/MHCI interfaces, resulting in a >1,000-fold higher affinity. Despite sharing only approximately 25% sequence identity, UL18's structure and peptide binding are surprisingly similar to host MHCI. The crystal structure suggests that most of the UL18 surface, except where LIR-1 and the host-derived light chain bind, is covered by carbohydrates attached to 13 potential N-glycosylation sites, thereby preventing access to bound peptide and association with most MHCI-binding proteins. The LIR-1/UL18 structure demonstrates how a viral protein evolves from its host ancestor to impede unwanted interactions while preserving and improving its receptor-binding site.
Collapse
|
8
|
Maffei M, Ghiotto F, Occhino M, Bono M, De Santanna A, Battini L, Gusella GL, Fais F, Bruno S, Ciccone E. Human cytomegalovirus regulates surface expression of the viral protein UL18 by means of two motifs present in the cytoplasmic tail. THE JOURNAL OF IMMUNOLOGY 2008; 180:969-79. [PMID: 18178837 DOI: 10.4049/jimmunol.180.2.969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UL18 is a trans-membrane viral protein expressed on human cytomegalovirus (HCMV)-infected cells, and its surface expression determines the interaction of infected cells with lymphocytes expressing the CD85j (LIR-1/ILT2) receptor. We previously showed that the UL18-CD85j interaction elicits activation of T lymphocytes. However, in in vitro cell models UL18 displays mostly undetectable surface expression. Thus, we asked how surface expression of UL18 is regulated. Domain-swapping experiments and construction of specific mutants demonstrated that two motifs on its cytoplasmic tail, homologous to YXXPhi and KKXX consensus sequences, respectively, are responsible for impairing UL18 surface expression. However, the presence of the whole HCMV genome, granted by HCMV infection of human fibroblasts, restored surface expression of either UL18 or chimeric proteins carrying the UL18 cytoplasmic tail, starting from the third day after infection. It is of note that the two motifs responsible for cytoplasmic retention are identical in all 17 HCMV strains examined. We disclosed a control mechanism used by the HCMV to regulate the availability of UL18 on the infected-cell surface to allow interaction with its ligand on T and NK cells.
Collapse
Affiliation(s)
- Massimo Maffei
- Human Anatomy Section, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|