1
|
Capera J, Jainarayanan A, Navarro-Pérez M, Valvo S, Demetriou P, Depoil D, Estadella I, Kvalvaag A, Felce JH, Felipe A, Dustin ML. Dynamics and spatial organization of Kv1.3 at the immunological synapse of human CD4+ T cells. Biophys J 2024; 123:2271-2281. [PMID: 37596785 PMCID: PMC11331042 DOI: 10.1016/j.bpj.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Formation of the immunological synapse (IS) is a key event during initiation of an adaptive immune response to a specific antigen. During this process, a T cell and an antigen presenting cell form a stable contact that allows the T cell to integrate both internal and external stimuli in order to decide whether to activate. The threshold for T cell activation depends on the strength and frequency of the calcium (Ca2+) signaling induced by antigen recognition, and it must be tightly regulated to avoid undesired harm to healthy cells. Potassium (K+) channels are recruited to the IS to maintain the negative membrane potential required to sustain Ca2+ entry. However, the precise localization of K+ channels within the IS remains unknown. Here, we visualized the dynamic subsynaptic distribution of Kv1.3, the main voltage-gated potassium channel in human T cells. Upon T cell receptor engagement, Kv1.3 polarized toward the synaptic cleft and diffused throughout the F-actin rich distal compartment of the synaptic interface-an effect enhanced by CD2-CD58 corolla formation. As the synapse matured, Kv1.3 clusters were internalized at the center of the IS and released in extracellular vesicles. We propose a model in which specific distribution of Kv1.3 within the synapse indirectly regulates the channel function and that this process is limited through Kv1.3 internalization and release in extracellular vesicles.
Collapse
Affiliation(s)
- Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ashwin Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Salvatore Valvo
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Philippos Demetriou
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; The Center for the Study of Haematological and Other Malignancies, Nicosia, Cyprus
| | - David Depoil
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Audun Kvalvaag
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - James H Felce
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
De Sanctis JB, Garmendia JV, Duchová H, Valentini V, Puskasu A, Kubíčková A, Hajdúch M. Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event. Cancers (Basel) 2024; 16:2630. [PMID: 39123358 PMCID: PMC11311849 DOI: 10.3390/cancers16152630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to CD4, CD8, and NK activation. However, recently, it has become clearer that activating the enzyme in CD8 cells can be independent of antigen presentation and enhance the cytotoxic response. The role of Lck in NK cytotoxic function has been controversial in a similar fashion as the role of the enzyme in CAR T cells. Inhibiting tyrosine kinases has been a highly successful approach to treating hematologic malignancies. The inhibitors may be useful in treating other tumor types, and they may be useful to prevent cell exhaustion. New, more selective inhibitors have been documented, and they have shown interesting activities not only in tumor growth but in the treatment of autoimmune diseases, asthma, and graft vs. host disease. Drug repurposing and bioinformatics can aid in solving several unsolved issues about the role of Lck in cancer. In summary, the role of Lck in immune response and tumor growth is not a simple event and requires more research.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
| | - Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
| | - Hana Duchová
- Faculty of Science, Palacky University, 77900 Olomouc, Czech Republic; (H.D.); (A.P.)
| | - Viktor Valentini
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
| | - Alex Puskasu
- Faculty of Science, Palacky University, 77900 Olomouc, Czech Republic; (H.D.); (A.P.)
| | - Agáta Kubíčková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
4
|
Binder C, Cvetkovski F, Sellberg F, Berg S, Paternina Visbal H, Sachs DH, Berglund E, Berglund D. CD2 Immunobiology. Front Immunol 2020; 11:1090. [PMID: 32582179 PMCID: PMC7295915 DOI: 10.3389/fimmu.2020.01090] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
The glycoprotein CD2 is a costimulatory receptor expressed mainly on T and NK cells that binds to LFA3, a cell surface protein expressed on e.g., antigen-presenting cells. CD2 has an important role in the formation and organization of the immunological synapse that is formed between T cells and antigen-presenting cells upon cell-cell conjugation and associated intracellular signaling. CD2 expression is upregulated on memory T cells as well as activated T cells and plays an important role in activation of memory T cells despite the coexistence of several other costimulatory pathways. Anti-CD2 monoclonal antibodies have been shown to induce immune modulatory effects in vitro and clinical studies have proven the safety and efficacy of CD2-targeting biologics. Investigators have highlighted that the lack of attention to the CD2/LFA3 costimulatory pathway is a missed opportunity. Overall, CD2 is an attractive target for monoclonal antibodies intended for treatment of pathologies characterized by undesired T cell activation and offers an avenue to more selectively target memory T cells while favoring immune regulation.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Horacio Paternina Visbal
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - David H Sachs
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Division of Transplantation Surgery, CLINTEC, Karolinska Institute, and Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
5
|
Polley A, Orłowski A, Danne R, Gurtovenko AA, Bernardino de la Serna J, Eggeling C, Davis SJ, Róg T, Vattulainen I. Glycosylation and Lipids Working in Concert Direct CD2 Ectodomain Orientation and Presentation. J Phys Chem Lett 2017; 8:1060-1066. [PMID: 28191954 PMCID: PMC5445502 DOI: 10.1021/acs.jpclett.6b02824] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/13/2017] [Indexed: 05/30/2023]
Abstract
Proteins embedded in the plasma membrane mediate interactions with the cell environment and play decisive roles in many signaling events. For cell-cell recognition molecules, it is highly likely that their structures and behavior have been optimized in ways that overcome the limitations of membrane tethering. In particular, the ligand binding regions of these proteins likely need to be maximally exposed. Here we show by means of atomistic simulations of membrane-bound CD2, a small cell adhesion receptor expressed by human T-cells and natural killer cells, that the presentation of its ectodomain is highly dependent on membrane lipids and receptor glycosylation acting in apparent unison. Detailed analysis shows that the underlying mechanism is based on electrostatic interactions complemented by steric interactions between glycans in the protein and the membrane surface. The findings are significant for understanding the factors that render membrane receptors accessible for binding and signaling.
Collapse
Affiliation(s)
- Anirban Polley
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 10, P.O. Box 692, FI-33101 Tampere, Finland
| | - Adam Orłowski
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 10, P.O. Box 692, FI-33101 Tampere, Finland
- Department
of Physics and Energy, University of Limerick, Limerick V94 T9PX, Ireland
| | - Reinis Danne
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 10, P.O. Box 692, FI-33101 Tampere, Finland
| | - Andrey A. Gurtovenko
- Institute
of Macromolecular Compounds, Russian Academy
of Sciences, Bolshoi
Prospect V.O. 31, St. Petersburg, 199004 Russia
- Faculty
of Physics, St. Petersburg State University, Ulyanovskaya Strasse 3, Petrodvorets, St. Petersburg, 198504 Russia
| | - Jorge Bernardino de la Serna
- Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research
Complex at Harwell, Harwell−Oxford
Campus, OX11 0FA Didcot, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology
Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | - Simon J. Davis
- MRC Human Immunology
Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 10, P.O. Box 692, FI-33101 Tampere, Finland
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 10, P.O. Box 692, FI-33101 Tampere, Finland
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Department
of Physics and Chemistry, MEMPHYS−Center for Biomembrane
Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
6
|
Gan Z, Wang B, Tang J, Lu Y, Jian J, Wu Z, Nie P. Molecular characterization and expression of CD2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus. FISH & SHELLFISH IMMUNOLOGY 2016; 50:101-108. [PMID: 26804651 DOI: 10.1016/j.fsi.2016.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The cluster of differentiation 2 (CD2), functioning as a cell adhesion and costimulatory molecule, plays a crucial role in T-cell activation. In this paper, the CD2 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD2) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed On-CD2 protein consists of two extracellular Ig-like domains, a transmembrane region, and a long proline-rich cytoplasmic tail, which is a hallmark of CD2, and several important structural characteristics required for T-cell activation were detected in the deduced amino acid sequence of On-CD2. In healthy tilapia, the On-CD2 transcripts were mainly detected in the head kidney, spleen, blood and thymus. Moreover, there was a clear time-dependent expression pattern of On-CD2 after immunized by formalin-inactivated S. agalactiae and the expression reached the highest level at 12 h in the brain and head kidney, 48 h in the spleen, and 72 h in the thymus, respectively. This is the first report on the expression of CD2 induced by bacteria vaccination in teleosts. These findings indicated that On-CD2 may play an important role in the immune response to intracellular bacteria in Nile tilapia.
Collapse
Affiliation(s)
- Zhen Gan
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China.
| | - JiChang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Taylor EB, Wilson M, Bengten E. The Src tyrosine kinase Lck binds to CD2, CD4-1, and CD4-2 T cell co-receptors in channel catfish, Ictalurus punctatus. Mol Immunol 2015; 66:126-38. [DOI: 10.1016/j.molimm.2015.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
8
|
Pinto M, Carmo AM. CD6 as a therapeutic target in autoimmune diseases: successes and challenges. BioDrugs 2013; 27:191-202. [PMID: 23568178 DOI: 10.1007/s40259-013-0027-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transmembrane surface glycoprotein CD6 was one of the first antigens identified on T lymphocytes. The recognition of its involvement in T-cell signaling processes heralds the potential of CD6 as a target for therapy in a number of pathologies associated with imbalances in T-cell function. Its tissue distribution, cellular expression, and overall molecular structure are well described, and the interaction with its physiological ligand CD166 has been determined to the amino-acid level. Nevertheless, the involvement of CD6 in signaling pathways remains poorly characterized and its biological function is controversial; still unresolved are whether CD6 is a co-stimulatory molecule in T-cell activation or, similar to the related CD5 antigen, a modulator of intracellular signaling. Here we revisit the earliest attempts of modulating immune function using CD6 monoclonal antibodies, and review the current thinking behind the recent developments in immunotherapy targeting CD6. Notwithstanding the promises and hopes brought by monoclonals already in clinical trials, the fact is that very little is known about the mechanism of action of these reagents, whether they enhance the physiological role of the receptor or whether they may induce a completely novel biochemical response that might, nevertheless, be beneficially used to treat human immune pathology.
Collapse
Affiliation(s)
- Mafalda Pinto
- Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | | |
Collapse
|
9
|
Oliveira MI, Gonçalves CM, Pinto M, Fabre S, Santos AM, Lee SF, Castro MAA, Nunes RJ, Barbosa RR, Parnes JR, Yu C, Davis SJ, Moreira A, Bismuth G, Carmo AM. CD6 attenuates early and late signaling events, setting thresholds for T-cell activation. Eur J Immunol 2011; 42:195-205. [PMID: 21956609 PMCID: PMC3298641 DOI: 10.1002/eji.201040528] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/23/2011] [Accepted: 09/20/2011] [Indexed: 12/27/2022]
Abstract
The T lineage glycoprotein CD6 is generally considered to be a costimulator of T-cell activation. Here, we demonstrate that CD6 significantly reduces early and late T-cell responses upon superantigen stimulation or TCR triggering by Abs. Measuring calcium mobilization in single cells responding to superantigen, we found that human T cells expressing rat CD6 react significantly less well compared with T cells not expressing the exogenous receptor. When the cytoplasmic domain of rat CD6 was removed, calcium responses were recovered, indicating that the inhibitory properties of CD6 are attributable to its cytoplasmic domain. Calcium responses, and also late indicators of T-cell activation such as IL-2 release, were also diminished in TCR-activated Jurkat cells expressing human CD6, compared with CD6-deficient cells or cells expressing a cytoplasmic deletion mutant of human CD6. Similarly, calcium signals triggered by anti-CD3 were enhanced in human T lymphocytes following morpholino-mediated suppression of CD6 expression. Finally, the proliferation of T lymphocytes was increased when the CD6-CD166 interaction was blocked with anti-CD166 Abs, but inhibited when anti-CD6 Abs were used. Our data suggest that CD6 is a signaling attenuator whose expression alone, i.e. in the absence of ligand engagement, is sufficient to restrain signaling in T cells.
Collapse
Affiliation(s)
- Marta I Oliveira
- Group of Cell Activation and Gene Expression, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bamberger M, Santos AM, Gonçalves CM, Oliveira MI, James JR, Moreira A, Lozano F, Davis SJ, Carmo AM. A new pathway of CD5 glycoprotein-mediated T cell inhibition dependent on inhibitory phosphorylation of Fyn kinase. J Biol Chem 2011; 286:30324-30336. [PMID: 21757751 PMCID: PMC3162391 DOI: 10.1074/jbc.m111.230102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triggering of the T cell receptor initiates a signaling cascade resulting in the activation of the T cell. These signals are integrated alongside those resulting from the triggering of other receptors whose function is to modulate the overall response. CD5 is an immunotyrosine-based inhibition motif-bearing receptor that antagonizes the overt T cell receptor activation response by recruiting inhibitory intracellular mediators such as SHP-1, RasGAP, or Cbl. We now propose that the inhibitory effects of CD5 are also mediated by a parallel pathway that functions at the level of inhibition of Fyn, a kinase generally associated with T cell receptor-mediated activation. After CD5 ligation, phosphorylation of the negative regulatory tyrosine (Tyr(531)) of Fyn increases, and this correlates with a substantial reduction in the kinase activity of Fyn and a profound inhibition of ZAP-70 activation. The effect requires the last 23 amino acids of the cytoplasmic domain of the receptor, strongly implying the involvement of a new CD5-interacting signaling or adaptor protein. Furthermore, we show that upon CD5 ligation there is a profound shift in its distribution from the bulk fluid phase to the lipid raft environment, where it associates with Fyn, Lck, and PAG. We suggest that the relocation of CD5, which we also show is capable of forming homodimers, to the proximity of raft-resident molecules enables CD5 to inhibit membrane proximal signaling by controlling the phosphorylation and activity of Fyn, possibly by interfering with the disassembly of C-terminal Src kinase (Csk)-PAG-Fyn complexes during T cell activation.
Collapse
Affiliation(s)
- Martina Bamberger
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Ana Mafalda Santos
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Carine M Gonçalves
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Marta I Oliveira
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - John R James
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Alexandra Moreira
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Franscisco Lozano
- Department of Immunology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Simon J Davis
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Alexandre M Carmo
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal.
| |
Collapse
|
11
|
Fournier M, Peyrou M, Bourgoin L, Maeder C, Tchou I, Foti M. CD4 dimerization requires two cysteines in the cytoplasmic domain of the molecule and occurs in microdomains distinct from lipid rafts. Mol Immunol 2010; 47:2594-603. [DOI: 10.1016/j.molimm.2010.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 05/06/2010] [Accepted: 06/21/2010] [Indexed: 01/27/2023]
|
12
|
Muhammad A, Schiller HB, Forster F, Eckerstorfer P, Geyeregger R, Leksa V, Zlabinger GJ, Sibilia M, Sonnleitner A, Paster W, Stockinger H. Sequential cooperation of CD2 and CD48 in the buildup of the early TCR signalosome. THE JOURNAL OF IMMUNOLOGY 2009; 182:7672-80. [PMID: 19494291 DOI: 10.4049/jimmunol.0800691] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The buildup of TCR signaling microclusters containing adaptor proteins and kinases is prerequisite for T cell activation. One hallmark in this process is association of the TCR with lipid raft microdomains enriched in GPI-proteins that have potential to act as accessory molecules for TCR signaling. In this study, we show that GPI-anchored CD48 but not CD59 was recruited to the immobilized TCR/CD3 complex upon activation of T cells. CD48 reorganization was vital for T cell IL-2 production by mediating lateral association of the early signaling component linker for activated T cells (LAT) to the TCR/CD3 complex. Furthermore, we identified CD2 as an adaptor linking the Src protein tyrosine kinase Lck and the CD48/LAT complex to TCR/CD3: CD2 associated with TCR/CD3 upon T cell activation irrespective of CD48 expression, while association of CD48 and LAT with the TCR/CD3 complex depended on CD2. Consequently, our data indicate that CD2 and CD48 cooperate hierarchically in the buildup of the early TCR signalosome; CD2 functions as the master switch recruiting CD48 and Lck. CD48 in turn shuttles the transmembrane adapter molecule LAT.
Collapse
Affiliation(s)
- Arshad Muhammad
- Department of Molecular Immunology, Centre for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|