1
|
Recipient-specific T-cell repertoire reconstitution in the gut following murine hematopoietic cell transplant. Blood Adv 2021; 4:4232-4243. [PMID: 32898248 DOI: 10.1182/bloodadvances.2019000977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a complication of hematopoietic cell transplantation (HCT) caused by alloreactive T cells. Murine models of HCT are used to understand GVHD and T-cell reconstitution in GVHD target organs, most notably the gastrointestinal (GI) tract where the disease contributes most to patient mortality. T-cell receptor (TCR) repertoire sequencing was used to measure T-cell reconstitution from the same donor graft (C57BL/6 H-2b) in the GI tract of different recipients across a spectrum of matching, from syngeneic (C57BL/6), to minor histocompatibility (MHC) antigen mismatch BALB.B (H-2b), to major MHC mismatched B10.BR (H-2k) and BALB/c (H-2d). Although the donor T-cell pools had highly similar TCR, the TCR repertoire after HCT was very specific to recipients in each experiment independent of geography. A single invariant natural killer T clone was identifiable in every recipient group and was enriched in syngeneic recipients according to clonal count and confirmatory flow cytometry. Using a novel cluster analysis of the TCR repertoire, we could classify recipient groups based only on their CDR3 size distribution or TCR repertoire relatedness. Using a method for evaluating the contribution of common TCR motifs to relatedness, we found that reproducible sets of clones were associated with specific recipient groups within each experiment and that relatedness did not necessarily depend on the most common clones in allogeneic recipients. This finding suggests that TCR reconstitution is highly stochastic and likely does not depend on the evaluation of the most expanded TCR clones in any individual recipient but instead depends on a complex polyclonal architecture.
Collapse
|
2
|
Trade-off between somatic and germline repair in a vertebrate supports the expensive germ line hypothesis. Proc Natl Acad Sci U S A 2020; 117:8973-8979. [PMID: 32245815 PMCID: PMC7183174 DOI: 10.1073/pnas.1918205117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
“How can we stop aging?” is still a largely unanswered question. Understanding the possible mechanisms that lead to the gradual deterioration of the organism over time is key to answer this question and finding possible antidotes. A central tenet of the evolutionary theory of aging is the possible trade-off between the maintenance of the immortal germ line and the disposable soma. Male vertebrates continue somatic and germline proliferation throughout life, offering an ideal opportunity to study this hypothesis. We show that in male zebrafish exposed to stressful conditions, the experimental removal of the germ line improves somatic recovery. Our results provide direct evidence for the cost of the germ line in a vertebrate. The disposable soma theory is a central tenet of the biology of aging where germline immortality comes at the cost of an aging soma [T. B. L. Kirkwood, Nature 270, 301–304 (1977); T. B. L. Kirkwood, Proc. R. Soc. Lond. B Biol. Sci. 205, 531–546 (1979); T. B. L. Kirkwood, S. N. Austad, Nature 408, 233–238 (2000)]. Limited resources and a possible trade-off between the repair and maintenance of the germ cells and growth and maintenance of the soma may explain the deterioration of the soma over time. Here we show that germline removal allows accelerated somatic healing under stress. We tested “the expensive germ line” hypothesis by generating germline-free zebrafish Danio rerio and testing the effect of the presence and absence of the germ line on somatic repair under benign and stressful conditions. We exposed male fish to sublethal low-dose ionizing radiation, a genotoxic stress affecting the soma and the germ line, and tested how fast the soma recovered following partial fin ablation. We found that somatic recovery from ablation occurred substantially faster in irradiated germline-free fish than in the control germline-carrying fish where somatic recovery was stunned. The germ line did show signs of postirradiation recovery in germline-carrying fish in several traits related to offspring number and fitness. These results support the theoretical conjecture that germline maintenance is costly and directly trades off with somatic maintenance.
Collapse
|
3
|
Binsfeld M, Beguin Y, Belle L, Otjacques E, Hannon M, Briquet A, Heusschen R, Drion P, Zilberberg J, Bogen B, Baron F, Caers J. Establishment of a murine graft-versus-myeloma model using allogeneic stem cell transplantation. PLoS One 2014; 9:e113764. [PMID: 25415267 PMCID: PMC4240591 DOI: 10.1371/journal.pone.0113764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Multiple myeloma (MM) is a malignant plasma cell disorder with poor long-term survival and high recurrence rates. Despite evidence of graft-versus-myeloma (GvM) effects, the use of allogeneic hematopoietic stem cell transplantation (allo-SCT) remains controversial in MM. In the current study, we investigated the anti-myeloma effects of allo-SCT from B10.D2 mice into MHC-matched myeloma-bearing Balb/cJ mice, with concomitant development of chronic graft-versus-host disease (GvHD). Methods and results Balb/cJ mice were injected intravenously with luciferase-transfected MOPC315.BM cells, and received an allogeneic (B10.D2 donor) or autologous (Balb/cJ donor) transplant 30 days later. We observed a GvM effect in 94% of the allogeneic transplanted mice, as the luciferase signal completely disappeared after transplantation, whereas all the autologous transplanted mice showed myeloma progression. Lower serum paraprotein levels and lower myeloma infiltration in bone marrow and spleen in the allogeneic setting confirmed the observed GvM effect. In addition, the treated mice also displayed chronic GvHD symptoms. In vivo and in vitro data suggested the involvement of effector memory CD4 and CD8 T cells associated with the GvM response. The essential role of CD8 T cells was demonstrated in vivo where CD8 T-cell depletion of the graft resulted in reduced GvM effects. Finally, TCR Vβ spectratyping analysis identified Vβ families within CD4 and CD8 T cells, which were associated with both GvM effects and GvHD, whereas other Vβ families within CD4 T cells were associated exclusively with either GvM or GvHD responses. Conclusions We successfully established an immunocompetent murine model of graft-versus-myeloma. This is the first murine GvM model using immunocompetent mice that develop MM which closely resembles human MM disease and that are treated after disease establishment with an allo-SCT. Importantly, using TCR Vβ spectratyping, we also demonstrated the presence of GvM unique responses potentially associated with the curative capacity of this immunotherapeutic approach.
Collapse
Affiliation(s)
- Marilène Binsfeld
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Ludovic Belle
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Eléonore Otjacques
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Muriel Hannon
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Alexandra Briquet
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | | | - Jenny Zilberberg
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, United States of America
| | - Bjarne Bogen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen centre for research on influenza vaccines, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
4
|
Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood 2014; 124:2131-41. [PMID: 25139358 DOI: 10.1182/blood-2013-10-525873] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Posttransplantation cyclophosphamide (PTCy) is an effective prophylaxis against graft-versus-host disease (GVHD). However, it is unknown whether PTCy works singularly by eliminating alloreactive T cells via DNA alkylation or also by restoring the conventional (Tcon)/regulatory (Treg) T-cell balance. We studied the role of Tregs in PTCy-mediated GVHD prophylaxis in murine models of allogeneic blood or marrow transplantation (alloBMT). In 2 distinct MHC-matched alloBMT models, infusing Treg-depleted allografts abrogated the GVHD-prophylactic activity of PTCy. Using allografts in which Foxp3(+) Tregs could be selectively depleted in vivo, either pre- or post-PTCy ablation of donor thymus-derived Tregs (tTregs) abolished PTCy protection against GVHD. PTCy treatment was associated with relative preservation of donor Tregs. Experiments using combinations of Foxp3(-) Tcons and Foxp3(+) Tregs sorted from different Foxp3 reporter mice indicated that donor Treg persistence after PTCy treatment was predominantly caused by survival of functional tTregs that retained Treg-specific demethylation and also induction of peripherally derived Tregs. Finally, adoptive transfer of tTregs retrieved from PTCy-treated chimeras rescued PTCy-treated, Treg-depleted recipients from lethal GVHD. Our findings indicate that PTCy-mediated protection against GVHD is not singularly dependent on depletion of donor alloreactive T cells but also requires rapidly recovering donor Tregs to initiate and maintain alloimmune regulation.
Collapse
|
5
|
de Almeida PE, Meyer EH, Kooreman NG, Diecke S, Dey D, Sanchez-Freire V, Hu S, Ebert A, Odegaard J, Mordwinkin NM, Brouwer TP, Lo D, Montoro DT, Longaker MT, Negrin RS, Wu JC. Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 2014; 5:3903. [PMID: 24875164 PMCID: PMC4075468 DOI: 10.1038/ncomms4903] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/15/2014] [Indexed: 12/18/2022] Open
Abstract
The exact nature of the immune response elicited by autologous induced pluripotent stem cell (iPSC) progeny is still not well understood. Here we show in murine models that autologous iPSC-derived endothelial cells (iECs) elicit an immune response that resembles the one against a comparable somatic cell, the aortic endothelial cell (AEC). These cells exhibit long-term survival in vivo and prompt a tolerogenic contexture of intra-graft characterized by elevated IL-10 expression. In contrast, undifferentiated iPSCs elicit a very different immune response with high lymphocytic infiltration and elevated IFN-γ, granzyme-B, and perforin intra-graft. Furthermore, the clonal structure of infiltrating T cells from iEC grafts is statistically indistinguishable from that of AECs, but is different from that of undifferentiated iPSC grafts. Taken together, our results indicate that the differentiation of iPSCs results in a loss of immunogenicity and leads to the induction of tolerance, despite expected antigen expression differences between iPSC-derived versus original somatic cells.
Collapse
Affiliation(s)
- Patricia E de Almeida
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA [4]
| | - Everett H Meyer
- 1] Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2]
| | - Nigel G Kooreman
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA [4]
| | - Sebastian Diecke
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Devaveena Dey
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Veronica Sanchez-Freire
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Shijun Hu
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Antje Ebert
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Justin Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Nicholas M Mordwinkin
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Thomas P Brouwer
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - David Lo
- 1] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Daniel T Montoro
- 1] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Michael T Longaker
- 1] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Robert S Negrin
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| | - Joseph C Wu
- 1] Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, California 94305-5323, USA [2] Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305-5323, USA [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305-5323, USA
| |
Collapse
|
6
|
Fanning SL, Zilberberg J, Stein J, Vazzana K, Berger SA, Korngold R, Friedman TM. Unraveling graft-versus-host disease and graft-versus-leukemia responses using TCR Vβ spectratype analysis in a murine bone marrow transplantation model. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23203931 DOI: 10.4049/jimmunol.1201641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The optimum use of allogeneic blood and marrow transplantation (BMT) as a curative therapy for hematological malignancies lies in the successful separation of mature donor T cells that are host reactive and induce graft-versus-host disease (GVHD) from those that are tumor reactive and mediate graft-versus-leukemia (GVL) effects. To study whether this separation was possible in an MHC-matched murine BMT model (B10.BR→CBA) with a CBA-derived myeloid leukemia line, MMC6, we used TCR Vβ CDR3-size spectratype analysis to first show that the Vβ13 family was highly skewed in the B10.BR anti-MMC6 CD8(+) T cell response but not in the alloresponse against recipient cells alone. Transplantation of CD8(+)Vβ13(+) T cells at the dose equivalent of their constituency in 1 × 10(7) CD8(+) T cells, a dose that had been shown to mediate lethal GVHD in recipient mice, induced a slight GVL response with no concomitant GVHD. Increasing doses of CD8(+)Vβ13(+) T cells led to more significant GVL responses but also increased GVHD symptoms and associated mortality. Subsequent spectratype analysis of GVHD target tissues revealed involvement of gut-infiltrating CD8(+)Vβ13(+) T cells accounting for the observed in vivo effects. When BMT recipients were given MMC6-presensitized CD8(+)Vβ13(+) T cells, they displayed a significant GVL response with minimal GVHD. Spectratype analysis of tumor-presensitized, gut-infiltrating CD8(+)Vβ13(+) T cells showed preferential usage of tumor-reactive CDR3-size lengths, and these cells expressed increased effector memory phenotype (CD44(+)CD62L(-/lo)). Thus, Vβ spectratyping can identify T cells involved in antihost and antitumor reactivity and tumor presensitization can aid in the separation of GVHD and GVL responses.
Collapse
Affiliation(s)
- Stacey L Fanning
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhao D, Young JS, Chen YH, Shen E, Yi T, Todorov I, Chu PG, Forman SJ, Zeng D. Alloimmune response results in expansion of autoreactive donor CD4+ T cells in transplants that can mediate chronic graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2010; 186:856-68. [PMID: 21149609 DOI: 10.4049/jimmunol.1002195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is considered an autoimmune-like disease mediated by donor CD4(+) T cells, but the origin of the autoreactive T cells is still controversial. In this article, we report that the transplantation of DBA/2 donor spleen cells into thymectomized MHC-matched allogeneic BALB/c recipients induced autoimmune-like cGVHD, although not in control syngeneic DBA/2 recipients. The donor-type CD4(+) T cells from the former but not the latter recipients induced autoimmune-like manifestations in secondary allogeneic BALB/c as well as syngeneic DBA/2 recipients. Transfer of donor-type CD4(+) T cells from secondary DBA/2 recipients with disease into syngeneic donor-type or allogeneic host-type tertiary recipients propagated autoimmune-like manifestations in both. Furthermore, TCR spectratyping revealed that the clonal expansion of the autoreactive CD4(+) T cells in cGVHD recipients was initiated by an alloimmune response. Finally, hybridoma CD4(+) T clones derived from DBA/2 recipients with disease proliferated similarly in response to stimulation by syngeneic donor-type or allogeneic host-type dendritic cells. These results demonstrate that the autoimmune-like manifestations in cGVHD can be mediated by a population of donor CD4(+) T cells in transplants that simultaneously recognize Ags presented by both donor and host APCs.
Collapse
Affiliation(s)
- Dongchang Zhao
- Department of Diabetes Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zilberberg J, Friedman TM, Dranoff G, Korngold R. Treatment with GM-CSF secreting myeloid leukemia cell vaccine prior to autologous-BMT improves the survival of leukemia-challenged mice. Biol Blood Marrow Transplant 2010; 17:330-40. [PMID: 20946965 DOI: 10.1016/j.bbmt.2010.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/29/2010] [Indexed: 11/27/2022]
Abstract
Vaccination with irradiated autologous tumor cells, engineered to secrete granulocyte macrophage-colony stimulating factor (GM-CSF) (GM tumor), can generate potent antitumor effects when combined with autologous bone marrow transplantation (BMT). That notwithstanding, the post-BMT milieu, characterized by marked cytopenia, can pose a challenge to the implementation of vaccine immunotherapies. To bypass this problem, partial post-BMT immune reconstitution has been allowed to develop prior to vaccination. However, delaying vaccination can also potentially allow the expansion of residual tumor cells. Other approaches have used reinfusion of "primed" autologous lymphocytes and multiple administrations of GM tumor cells, which required the processing of large amounts of tumor. Utilizing the MMB3.19 murine myeloid leukemia model, we tested whether a single dose of GM tumor cells, 7 days prior to syngeneic BMT, could be a curative treatment in MMB3.19-challenged recipient mice. This vaccination protocol significantly improved survival of mice by eliciting long-lasting host immune responses that survived lethal irradiation, and were even protective against post-BMT tumor rechallenge. Furthermore, we demonstrated that mature donor lymphocytes can also play a limited role in mounting the antitumor response, but our pre-BMT vaccination strategy obviated the need for either established de novo immune reconstitution or the use of multiple post-BMT immunizations.
Collapse
Affiliation(s)
- Jenny Zilberberg
- The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey 07601, USA.
| | | | | | | |
Collapse
|
9
|
Fanning SL, Appel MY, Berger SA, Korngold R, Friedman TM. The immunological impact of genetic drift in the B10.BR congenic inbred mouse strain. THE JOURNAL OF IMMUNOLOGY 2009; 183:4261-72. [PMID: 19752227 DOI: 10.4049/jimmunol.0900971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The MHC-matched, minor histocompatibility Ag (miHA)-mismatched B10.BR-->CBA strain combination has been used to elucidate the immunobiology of graft-vs-host disease (GVHD) following allogeneic bone marrow transplantation. Studies conducted in the 1980s had established that B10.BR CD8+ T cells were capable of mediating GVHD in the absence of CD4+ T cells, and that CD4+ T cells were unable to induce lethal disease. In more recent studies with this GVHD model, we detected etiological discrepancies with the previously published results, which suggested that genetic drift might have occurred within the B10.BR strain. In particular, there was increased allorecognition of CBA miHA by B10.BR CD4+ T cells, as determined by both TCR Vbeta spectratype analysis and the induction of lethal GVHD in CBA recipients. Additionally, alloreactivity was observed between the genetically drifted mice (B10.BR/Jdrif) and mice rederived from frozen embryos of the original strain (B10.BR/Jrep) using Vbeta spectratype analysis and IFN-gamma ELISPOT assays, suggesting that new miHA differences had arisen between the mice. Furthermore, T cell-depleted B10.BR/Jdrif bone marrow cells were unable to provide long-term survival following either allogeneic or syngeneic bone marrow transplantation. Gene expression analysis revealed several genes involved in hematopoiesis that were overexpressed in the lineage-negative fraction of B10.BR/Jdrif bone marrow, as compared with B10.BR/Jrep mice. Taken together, these results suggest that genetic drift in the B10.BR strain has significantly impacted the immune alloreactive response in the GVHD model by causing altered expression of miHA and diminished capacity for survival following transplantation into lethally irradiated recipients.
Collapse
Affiliation(s)
- Stacey L Fanning
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | | | | | | |
Collapse
|
10
|
Zheng H, Matte-Martone C, Jain D, McNiff J, Shlomchik WD. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5938-48. [PMID: 19414745 PMCID: PMC9844260 DOI: 10.4049/jimmunol.0802212] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In allogeneic hemopoietic stem cell transplantation, mature donor alphabeta T cells in the allograft promote T cell reconstitution in the recipient and mediate the graft-vs-leukemia (GVL) effect. Unfortunately, donor T cells can attack nonmalignant host tissues and cause graft-vs-host disease (GVHD). It has previously been shown that effector memory T cells not primed to alloantigen do not cause GVHD yet transfer functional T cell memory and mediate GVL. Recently, central memory T cells (T(CM)) have also been reported to not cause GVHD. In contrast, in this study, we demonstrate that purified CD8(+) T(CM) not specifically primed to alloantigens mediate GVHD in the MHC-mismatched C57BL/6 (B6)-->BALB/c and the MHC-matched, multiple minor histocompatibility Ag-mismatched C3H.SW-->B6 strain pairings. CD8(+) T(CM) and naive T cells (T(N)) caused similar histological disease in liver, skin, and bowel. B6 CD8(+) T(CM) and T(N) similarly expanded in BALB/c recipients, and the majority of their progeny produced IFN-gamma upon restimulation. However, in both models, CD8(+) T(CM) induced milder clinical GVHD than did CD8(+) T(N). Nonetheless, CD8(+) T(CM) and T(N) were similarly potent mediators of GVL against a mouse model of chronic-phase chronic myelogenous leukemia. Thus, in contrast to what was previously thought, CD8(+) T(CM) are capable of inducing GVHD and are substantially different from T(EM) but only subtly so from T(N).
Collapse
Affiliation(s)
- Hong Zheng
- Penn State Milton S. Hershey Medical Center, Department of Medicine, Hershey, PA
| | - Catherine Matte-Martone
- Yale Cancer Center and Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Jennifer McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
| | - Warren D. Shlomchik
- Yale Cancer Center and Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Correspondence: Warren D. Shlomchik, Yale Comprehensive Cancer Center, PO Box 208032, Yale University School of Medicine, New Haven, CT 06520-8032,
| |
Collapse
|