1
|
Van Laecke S, Van Damme K, Dendooven A. Immunosenescence: an unexplored role in glomerulonephritis. Clin Transl Immunology 2022; 11:e1427. [PMID: 36420421 PMCID: PMC9676375 DOI: 10.1002/cti2.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
Immunosenescence is a natural ageing phenomenon with alterations in innate and especially adaptive immunity and contributes to reduced antimicrobial defence and chronic low‐grade inflammation. This is mostly reflected by an increase in organ‐directed and/or circulating reactive and cytolytic terminally differentiated T cells that have lost their expression of the costimulatory receptor CD28. Apart from being induced by a genetic predisposition, ageing or viral infections (particularly cytomegalovirus infection), immunosenescence is accelerated in many inflammatory diseases and uraemia. This translates into an enhancement of vascular inflammation and cardiovascular disease varying from endothelial dysfunction to plaque rupture. Emerging data point to a mechanistic role of CD28null T cells in glomerulonephritis, where they initiate and propagate local inflammation in concordance with dendritic cells and macrophages. They are suitably equipped to escape immunological dampening by the absence of homing to lymph nodes, anti‐apoptotic properties and resistance to suppression by regulatory T cells. Early accumulation of senescent CD28null T cells precedes glomerular or vascular injury, and targeting these cells could open avenues for early treatment interventions that aim at abrogating a detrimental vicious cycle.
Collapse
Affiliation(s)
| | - Karel Van Damme
- Renal Division Ghent University Hospital Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, Center for Inflammation Research VIB Center for Inflammation Research Ghent Belgium
| | | |
Collapse
|
2
|
Li W, Xiang X, Cao N, Chen W, Tian Y, Zhang X, Shen X, Jiang D, Xu D, Xu S. Polysaccharide of atractylodes macrocephala koidz activated T lymphocytes to alleviate cyclophosphamide-induced immunosuppression of geese through novel_mir2/CD28/AP-1 signal pathway. Poult Sci 2021; 100:101129. [PMID: 34058564 PMCID: PMC8170423 DOI: 10.1016/j.psj.2021.101129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
Polysaccharide Of Atractylodes Macrocephala Koidz (PAMK) has been proved to have anti-cancer, antitumor, anti-inflammation function and improve the immune level of the organism. The miRNA plays a very important role in regulating the immune function by negatively regulate the expression of target genes. To explore the molecular mechanism of PAMK active the lymphocytes, thirty 61-d-old geese were randomly divided into 4 groups (C, CTX, PAMK, PAMK+CTX). The thymus morphology, the level of serum granulocyte-macrophage colony-stimulating factor (GMC-SF), IL-1β, IL-3, IL-5, the relative mRNA expression of CD25, novel_mir2, CTLA4 and CD28 signal pathway were measured. Further more, the lymphocytes was extracted from thymus to measure the relative mRNA expression of CD28 signal pathway. The results showed that PAMK could significantly maintain normal cell morphology of thymus, alleviate the decrease level of GMC-SF, IL-1β, IL-5, IL-6, TGF-β, the increase level of IL-4, IL-10, and the decrease relative mRNA expression of novel_mir2, CD25 and CD28 signal pathway in thymus and lymphocytes induced by cyclophosphamide (CTX). In conclusion, PAMK alleviated the decreased T lymphocytes activation levels induced by CTX through novel_mir2/CTLA4/CD28/AP-1 signal pathway.
Collapse
Affiliation(s)
- Wanyan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xuelian Xiang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Nan Cao
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Wenbin Chen
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Yunbo Tian
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xumeng Zhang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xu Shen
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Danli Jiang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Danning Xu
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|