1
|
Gao C, Zhao Y, Ge L, Liu W, Zhang M, Ni B, Song Z. Distinct maturation, glucose metabolism, and inflammatory function of human monocytes-derived IDECs mediated by anti-IgE and Pam3CSK4 alone or in combination. Front Immunol 2024; 15:1403263. [PMID: 39086490 PMCID: PMC11288808 DOI: 10.3389/fimmu.2024.1403263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Background Cell energy metabolism controls the activation and function of dendritic cells (DCs). Inflammatory dendritic epidermal cells (IDECs) in skin lesions of atopic dermatitis (AD) express high-affinity IgE receptor (FcϵRI) and toll-like receptor 2 (TLR2), which mediate the generation and maintenance of inflammation. However, cellular energy metabolism and effector function of IDECs mediated by FcϵRI and TLR2 have not been fully elucidated. Methods IDECs in vitro were treated with TLR2 agonist Pam3CSK4 and anti-IgE alone or in combination for 24 h. Further, we analyzed the expression of cell surface activation markers, production of inflammatory factors, and cellular energy metabolism profiles of IDECs by using flow cytometry, multiplex assay, RNA sequencing, targeted energy metabolism, and seahorse assays. Results Compared to the unstimulated or anti-IgE groups, Pam3CSK4 alone or combined with anti-IgE groups significantly increased the expression of CD80, CD83, and CD86 on IDECs, but did not affect the expression of the above markers in the anti-IgE group. The release of inflammatory cytokines increased in the Pam3CSK4 alone or combined with anti-IgE groups, while there was a weak increasing trend in the anti-IgE group. The glycolysis/gluconeogenesis pathway of carbon metabolism was affected in all treatment groups. Furthermore, compared to the control group, we found a decrease in pyruvic acid, upregulation of PFKM, downregulation of FBP1, and increase in extracellular lactate, glycolysis rate, and glycolysis capacity after all treatments, while there was no difference between each treatment group. However, there was no difference in glycolytic reserve and mitochondrial basic and maximum respiration among all groups. Conclusion Our results indicate that glycolysis of IDECs may be activated through FcϵRI and TLR2 to upregulate inflammatory factors, suggesting that danger signals from bacteria or allergens might evoke an inflammatory response from AD through the glycolysis pathway.
Collapse
Affiliation(s)
- Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ying Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Tan RZ, Zhong X, Han RY, Xie KH, Jia J, Yang Y, Cheng M, Yang CY, Lan HY, Wang L. Macrophages mediate psoriasis via Mincle-dependent mechanism in mice. Cell Death Discov 2023; 9:140. [PMID: 37117184 PMCID: PMC10147944 DOI: 10.1038/s41420-023-01444-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Psoriasis is currently considered to be an immune and inflammatory disease characterized by massive immune cells infiltration including macrophages. It has been reported that macrophage-inducible C-type lectin (Mincle) is essential to maintain the pro-inflammatory phenotype of M1 macrophages, however, its role and mechanisms in psoriasis remain largely unknown. A model of psoriasis was induced in mice by a daily topical application of imiquimod for 7 days. Role and mechanisms of Mincle in macrophage-mediated psoriasis were investigated in clodronate liposomes induced macrophage depletion mice followed by adoptively transferring with Mincle-expressing or -knockout (KO) macrophages, and in macrophage specific Mincle knockout mice (Mincleloxp/loxp/Lyz2-cre+/+). Finally, a Mincle neutralizing antibody was employed to the psoriasis mice to reveal the therapeutic potential for psoriasis by targeting Mincle. Mincle was highly expressed by M1 macrophages in the skin lesions of patients and mice with psoriasis. Clodronate liposomes-induced macrophage depletion inhibited psoriasis in mice, which was restored by adoptive transfer with Mincle-expressing macrophages but not by Mincle-KO macrophages. This was further confirmed in macrophage-specific Mincle-KO mice. Mechanistically, macrophages mediated psoriasis via the Mincle-Syk-NF-κB pathway as blocking macrophage Mincle inhibited Syk/NF-κB-driven skin lesions and epidermal injury in vivo and in vitro. We also found that LPS induced Mincle expression by M1 macrophages via the PU.1-dependent mechanism. Most importantly, we revealed that targeting Mincle with a neutralizing antibody significantly improved psoriasis in mice. In summary, our findings demonstrated that macrophages mediate psoriasis in mice via the Mincle-dependent mechanism, targeting Mincle may represent as a novel therapy for psoriasis. A simplified pathway model of Mincle in macrophage-mediated psoriasis.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rang-Yue Han
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ke-Huan Xie
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ye Yang
- Department of Orthopaedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Mei Cheng
- Dermatological Department, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chun-Yan Yang
- Dermatological Department, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Zhou C, Li M, Liu Y, Wang X, Zhang S, Guan L, Hong J, Zhou W, Wu G, Diao W, Huang Q, Yang P. Signals from the TAFA4-PTEN-PU.1 axis alleviate nasal allergy by modulating the expression of FcεRI in mast cells. Clin Exp Immunol 2023; 211:15-22. [PMID: 36368013 PMCID: PMC9993457 DOI: 10.1093/cei/uxac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The high-affinity IgE receptor, FcεRI, plays a key role in the antigen-induced mast cell activation. Regulations for FcεRI are not yet well understood. TAFA4 is a molecule derived from neuron tissues, and has immune regulation functions. This study aims to clarify the role of TAFA4 in the regulation of FcεRI expression in mast cells. Nasal secretions were collected from patients with allergic rhinitis (AR) and healthy control (HC) subjects. TAFA4 levels of nasal secretions were evaluated by ELISA. A mouse model AR was developed using ovalbumin as the specific antigen. Negative correlation between TAFA4 and tryptase levels in nasal secretions was observed. TAFA4 could suppress the antigen-related mast cell activation. TAFA4 modulated the transcription of Fcer1g (FcεRI γ gene) in mast cells. Signals from the TAFA4-PTEN-PU.1 axis restricted FcεRI expression in mast cells. Administration of TAFA4 attenuated experimental AR. TAFA4 suppressed the expression of FcεRI in mast cells of airway tissues. TAFA4 can down regulate the expression of FcεRI in mast cells to suppress experimental AR. The data suggest that TAFA4 has translation potential to be developed as an anti-allergy therapy.
Collapse
Affiliation(s)
- Caijie Zhou
- Longgang Traditional Chinese Medicine Hospital and Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, China
| | - Meihua Li
- Longgang Traditional Chinese Medicine Hospital and Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, China
| | - Yu Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinxin Wang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Shuang Zhang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Li Guan
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jingyi Hong
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Wei Zhou
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Gaohui Wu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiliang Diao
- Longgang Traditional Chinese Medicine Hospital and Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, China
| | - Qinmiao Huang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Kwon Y, Choi Y, Kim M, Jeong MS, Jung HS, Jeoung D. HDAC6 and CXCL13 Mediate Atopic Dermatitis by Regulating Cellular Interactions and Expression Levels of miR-9 and SIRT1. Front Pharmacol 2021; 12:691279. [PMID: 34588978 PMCID: PMC8473914 DOI: 10.3389/fphar.2021.691279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) has been known to regulate inflammatory diseases. The role of HDAC6 in allergic skin inflammation has not been studied. We studied the role of HDAC6 in atopic dermatitis (AD) and the mechanisms associated with it. The decreased expression or chemical inhibition of HDAC6 suppressed AD by decreasing autophagic flux and cellular features of AD. AD increased expression levels of the Th1 and Th2 cytokines, but decreased expression levels of forkhead box P3 (FoxP3) and interleukin-10 (IL-10) in an HDAC6-dependent manner. CXC chemokine ligand 13 (CXCL13), which was increased in an HDAC6-depenednt manner, mediated AD. MiR-9, negatively regulated by HDAC6, suppressed AD by directly regulating the expression of sirtuin 1 (SIRT1). The downregulation or inhibition of SIRT1 suppressed AD. Experiments employing culture medium and transwell suggested that cellular interactions involving mast cells, keratinocytes, and dermal fibroblast cells could promote AD; HDAC6 and CXCL13 were found to be necessary for these cellular interactions. Mouse recombinant CXCL13 protein increased HDAC6 expression in skin mast cells and dermal fibroblast cells. CXCL13 protein was found to be present in the exosomes of DNCB-treated skin mast cells. Exosomes of DNCB-treated skin mast cells enhanced invasion potentials of keratinocytes and dermal fibroblast cells and increased expression levels of HDAC6, SIRT1 and CXCL13 in keratinocytes and dermal fibroblast cells. These results indicate that HDAC6 and CXCL13 may serve as targets for the developing anti-atopic drugs.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Yunji Choi
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
5
|
Ou Y, Jiang X, Guan H. Vitamin D Receptor Gene Polymorphisms and Risk of Atopic Dermatitis in Chinese Han Population. Int J Gen Med 2021; 14:5301-5312. [PMID: 34526805 PMCID: PMC8435479 DOI: 10.2147/ijgm.s326477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Studies investigated the associations between four Vitamin D receptor (VDR) common variations and interactions of gene-environment factors and atopic dermatitis (AD) in Chinese population are few. METHODS In this case-control study, 400 AD patients and 400 controls were genotyped for the FokI, TaqI, BsmI and ApalI variations of VDR genes by restriction fragment length polymorphism analysis. The associations between VDR genes and AD were assessed by univariate and multivariate logistic regression. The interactions between VDR genes and some risk factors were also explored using cross-over analysis. The corresponding odds ratio (ORs) and 95% confidence intervals (CI) were also calculated. RESULTS The FoKI rs2228570 polymorphism was significantly associated with an increased risk of atopic dermatitis in the co-dominant model (OR=2.93, 95% CI: 1.78-4.82. P=0.000), recessive model (OR=2.67, 95% CI: 1.68-4.26, P=0.000) and dominant model (OR=1.38, 95% CI: 1.04-1.84, P=0.028), and allele model. No significant associations were found among TaqI, BsmI and ApalI polymorphism and AD. The C-A-T-C and C-G-T-T haplotypes significantly increased the risk of atopic dermatitis. For rs2228570, the increased effects were more evident in the subgroups of age ≤8-month, cow milk and mixed, and keeping pet. Interactions between rs2228570 gene polymorphism and family history, age >8, and keeping pet increased the AD risk. The rs2228570 C allele decreased the relative mRNA expression. CONCLUSION The FokI rs2228570 C allele of VDR gene could be a risk candidate gene for AD. Interactions between FokI polymorphism and family history and some behaviors may increase the risk of AD.
Collapse
Affiliation(s)
- Yunchao Ou
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430000, People’s Republic of China
| | - Xiaoli Jiang
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430000, People’s Republic of China
| | - Huiwen Guan
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430000, People’s Republic of China
| |
Collapse
|