1
|
Wang G, Ren X, Liu J, Wang W, Zhang C, Yuan C, Li J. Functional properties of insoluble dietary fibers extracted from different grape pomaces during simulated digestion and in vitro fermentation. Food Funct 2025. [PMID: 40271898 DOI: 10.1039/d4fo06074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This study investigated insoluble dietary fibers (IDFs) extracted from the grape pomaces of Cabernet Sauvignon (CS-IDF), Marselan (MS-IDF), and Merlot (ML-IDF). It explored the release patterns and potential bioactivities of dietary fiber-bound polyphenols from these sources through simulated digestion and in vitro colonic fermentation. The results showed a higher polyphenol content in MS grape skins, which also yielded more IDF. Bound polyphenols were released more effectively during fermentation than during digestion. Caffeic acid and epicatechin disappeared during the fermentation stage, while compounds such as chlorogenic acid, catechin, and myricetin appeared. Gentisic acid was the most abundant monomeric phenolic compound in the fermentation fluid. The released polyphenols exhibited strong antioxidant properties and digestive enzyme inhibitory activity. Fermentation of the IDFs increased propionic acid and total short-chain fatty acid (SCFA) levels, particularly in the CS-IDF and MS-IDF groups. MS-IDF also elevated the relative abundance of Acidaminococcus fermentans, a key SCFA producer. Additionally, all IDFs promoted the growth of beneficial gut bacteria such as Bacteroides H uniformis and Phascolarctobacterium A faecium, while reducing harmful bacteria such as Escherichia. Correlation analysis revealed a positive relationship between released polyphenols and the relative abundance of beneficial gut bacteria, including Parabacteroides B 862006 distasonis and Mitsuokella multacida. These findings suggest that dietary fiber-bound polyphenols exhibit significant bioactivity in the gastrointestinal tract, with MS-IDF showing particular advantages in promoting gut health and bioactive compound release.
Collapse
Affiliation(s)
- Gongda Wang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiangbo Ren
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Junyi Liu
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wenjuan Wang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Cui Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Viti-Viniculture, Yangling, 712100, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Viti-Viniculture, Yangling, 712100, Shaanxi, China
| |
Collapse
|
2
|
Edmunds CE, Welch CB, Lourenco JM, Callaway TR, Pringle TD, Dove CR. The Effects of Dietary Manganese and Selenium on Growth and the Fecal Microbiota of Nursery Piglets. Vet Sci 2023; 10:650. [PMID: 37999473 PMCID: PMC10675067 DOI: 10.3390/vetsci10110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The objective of this study was to determine the impact of varying dietary manganese and selenium concentrations, antioxidant cofactors, on the growth performance and fecal microbial populations of nursery pigs. The piglets (N = 120) were blocked by weight (5.22 ± 0.7 kg) and sex. The pens (n = 5/treatment) within a block were randomly assigned to diets in a 2 × 3 factorial design to examine the effects of Se (0.1 and 0.3 mg/kg added Se) and Mn (0, 12, and 24 mg/kg added Mn) and were fed in three phases (P1 = d 1-7, P2 = d 8-21, P3 = d 22-35). The pigs and orts were weighed weekly. Fecal samples were collected d 0 and 35 for 16S rRNA bacterial gene sequencing and VFA analysis. The data were analyzed as factorial via GLM in SAS. There was a linear response (p < 0.05) in overall ADG across dietary Mn. Supplementing 24 mg/kg Mn tended to decrease (p < 0.10) the relative abundance of many bacteria possessing pathogenic traits relative to Mn controls. Meanwhile, increasing Mn concentration tended to foster the growth of bacteria correlated with gut health and improved growth (p < 0.10). The data from this study provide preliminary evidence on the positive effects of manganese on growth and gut health of nursery pigs.
Collapse
Affiliation(s)
- Clint E. Edmunds
- School of Sciences, Clayton State University, Morrow, GA 30260, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Christina B. Welch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - T. Dean Pringle
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA;
| | - C. Robert Dove
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| |
Collapse
|
3
|
Zhang Y, Andreu-Sánchez S, Vadaq N, Wang D, Matzaraki V, van der Heijden WA, Gacesa R, Weersma RK, Zhernakova A, Vandekerckhove L, de Mast Q, Joosten LAB, Netea MG, van der Ven AJAM, Fu J. Gut dysbiosis associates with cytokine production capacity in viral-suppressed people living with HIV. Front Cell Infect Microbiol 2023; 13:1202035. [PMID: 37583444 PMCID: PMC10425223 DOI: 10.3389/fcimb.2023.1202035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Background People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1β (IL-1β), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wouter A. van der Heijden
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - André J. A. M. van der Ven
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Illa-Berenguer E, LaFayette PR, Parrott WA. Editing efficiencies with Cas9 orthologs, Cas12a endonucleases, and temperature in rice. Front Genome Ed 2023; 5:1074641. [PMID: 37032710 PMCID: PMC10080323 DOI: 10.3389/fgeed.2023.1074641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The advent of CRISPR-Cas technology has made it the genome editing tool of choice in all kingdoms of life, including plants, which can have large, highly duplicated genomes. As a result, finding adequate target sequences that meet the specificities of a given Cas nuclease on any gene of interest remains challenging in many cases. To assess target site flexibility, we tested five different Cas9/Cas12a endonucleases (SpCas9, SaCas9, St1Cas9, Mb3Cas12a, and AsCas12a) in embryogenic rice calli from Taipei 309 at 37°C (optimal temperature for most Cas9/Cas12a proteins) and 27°C (optimal temperature for tissue culture) and measured their editing rates under regular tissue culture conditions using Illumina sequencing. StCas9 and AsCas12 were not functional as tested, regardless of the temperature used. SpCas9 was the most efficient endonuclease at either temperature, regardless of whether monoallelic or biallelic edits were considered. Mb3Cas12a at 37°C was the next most efficient endonuclease. Monoallelic edits prevailed for both SaCas9 and Mb3Cas12a at 27°C, but biallelic edits prevailed at 37°C. Overall, the use of other Cas9 orthologs, the use of Cas12a endonucleases, and the optimal temperature can expand the range of targetable sequences.
Collapse
Affiliation(s)
- Eudald Illa-Berenguer
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- *Correspondence: Eudald Illa-Berenguer,
| | - Peter R. LaFayette
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Wayne A. Parrott
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Arumugam R, Ravichandran P, Yeap SK, Sharma RSK, Zulkifly SB, Yawah D, Annavi G. Application of High-Throughput Sequencing (HTS) to Enhance the Well-Being of an Endangered Species (Malayan Tapir): Characterization of Gut Microbiome Using MG-RAST. Methods Mol Biol 2023; 2649:175-194. [PMID: 37258862 DOI: 10.1007/978-1-0716-3072-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Tapirus indicus, also known as Malayan tapir, has been listed as a rapidly declining animal species in the past decades, along with being declared and categorized as an endangered species by the International Union for Conservation of Nature (IUCN) 2016. This tapir species is geographically distributed across several countries in Southeast Asia such as Peninsular Malaysia, Indonesia (Sumatra), South Thailand, and Myanmar. Amongst these countries, the Peninsula Malaysia forest is recorded to contain the highest number of Malayan tapir population. Unfortunately, in the past decades, the population of Malayan tapirs has declined swiftly due to serious deforestation, habitat fragmentation, and heavy vehicle accidents during road crossings at forest routes. Concerned by this predicament, the Department of Wildlife and National Parks (DWNP) Peninsular Malaysia collaborated with a few local universities to conduct various studies aimed at increasing the population number of tapirs in Malaysia. Several studies were conducted with the aim of enhancing the well-being of tapirs in captivity. Veterinarians face problems when it comes to selecting healthy and suitable tapirs for breeding programs at conservation centers. Conventional molecular methods using high-throughput sequencing provides a solution in determining the health condition of Malayan tapirs using the Next-Generation Sequencing (NGS) technology. Unaware by most, gut microbiome plays an important role in determining the health condition of an organism by various aspects: (1) digestion control; (2) benefiting the immune system; and (3) playing a role as a "second brain." Commensal gut bacterial communities (microbiomes) are predicted to influence organism health and disease. Imbalance of unhealthy and healthy microbes in the gut may contribute to weight gain, high blood sugar, high cholesterol, and other disorders. In infancy, neonatal gut microbiomes are colonized with maternal and environmental flora, and mature toward a stable composition in two to three years. Interactions between the microorganism communities and the host allow for the establishment of microbiological roles. Identifying the core microbiome(s) are essential in the prediction of diseases and changes in environmental behavior of microorganisms. The dataset of 16S rRNA amplicon sequencing of Malayan tapir was deposited in the MG-RAST portal. Parameters such as quality control, taxonomic prediction (unknown and predicted), diversity (rarefaction), and diversity (alpha) were analyzed using sequencing approaches (Amplicon sequencing). Comparisons of parameters, according to the type of sequencing, showed significant differences, except for the prediction variable. In the Amplicon sequencing datasets, the parameters Rarefaction and Unknown had the highest correlation, while Alpha and Predicted had the lowest. Firmicutes, Bacteroidetes, Proteobacteria, Bacilli, and Bacteroidia were the most representative genera in Malayan tapir amplicon sequences, which indicated that most of the tapirs were healthy. However, continuous assessment to maintain the well-being of tapir for long term is still required. This chapter focuses on the introduction of 16S rRNA amplicon metagenomics in analyzing Malayan tapir gut microbiome dataset.
Collapse
Affiliation(s)
- Ramitha Arumugam
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Dataplx Consultancy, Puchong, Selangor, Malaysia
| | - Prithivan Ravichandran
- Perdana University Graduate School (PUGSOM), Perdana University, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | | | - Shahrizim Bin Zulkifly
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Donny Yawah
- Department of Wildlife and National Parks (DWNP), Wildlife Genetic Resource Banking Laboratory, Ex-Situ Conservation Division, Peninsular Malaysia, Ministry of Natural Resources and Environment Malaysia (NRE), Kuala Lumpur, Malaysia
| | - Geetha Annavi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Yu P, Tu W, Wu M, Zhang Z, Wang H. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. BIORESOURCE TECHNOLOGY 2021; 332:125116. [PMID: 33857863 DOI: 10.1016/j.biortech.2021.125116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Here, a pilot-scale volatile fatty acids (VFAs) production system was established using food waste (FW) as feedstock under acidic conditions. The effects of pH (uncontrolled, 4.5, 5.5, and 6.5) on the FW acidification system were investigated. The results showed that VFAs concentration increased from 8419 to 15048 mg COD/L with pH level increasing from 4.5 to 6.5, and the highest VFA production yield (0.79 mgCOD/mgCOD) was obtained at a pH of 6.5. A larger proportion of butyric acid (52.9%) was observed, accompanied by a 23% decrease of acetic acid when pH was elevated to 6.5. Microbial analysis showed that Clostridium sensu stricto 1, Sporanaerobacter, and Proteiniphilum were dominant, which not only positively influence the hydrolysis and acidogenesis processes but also play an essential role in the conversion of acetic acid to butyric acid. In summary, this study provides a valuable reference for large-scale FW treatment to recover valuable resources.
Collapse
Affiliation(s)
- Peng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Menghan Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
8
|
Miclotte L, De Paepe K, Rymenans L, Callewaert C, Raes J, Rajkovic A, Van Camp J, Van de Wiele T. Dietary Emulsifiers Alter Composition and Activity of the Human Gut Microbiota in vitro, Irrespective of Chemical or Natural Emulsifier Origin. Front Microbiol 2020; 11:577474. [PMID: 33250870 PMCID: PMC7676226 DOI: 10.3389/fmicb.2020.577474] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
The use of additives in food products has become an important public health concern. In recent reports, dietary emulsifiers have been shown to affect the gut microbiota, contributing to a pro-inflammatory phenotype and metabolic syndrome. So far, it is not yet known whether similar microbiome shifts are observable for a more diverse set of emulsifier types and to what extent these effects vary with the unique features of an individual's microbiome. To bridge this gap, we investigated the effect of five dietary emulsifiers on the fecal microbiota from 10 human individuals upon a 48 h exposure. Community structure was assessed with quantitative microbial profiling, functionality was evaluated by measuring fermentation metabolites, and pro-inflammatory properties were assessed with the phylogenetic prediction algorithm PICRUSt, together with a TLR5 reporter cell assay for flagellin. A comparison was made between two mainstream chemical emulsifiers (carboxymethylcellulose and P80), a natural extract (soy lecithin), and biotechnological emulsifiers (sophorolipids and rhamnolipids). While fecal microbiota responded in a donor-dependent manner to the different emulsifiers, profound differences between emulsifiers were observed. Rhamnolipids, sophorolipids, and soy lecithin eliminated 91 ± 0, 89 ± 1, and 87 ± 1% of the viable bacterial population after 48 h, yet they all selectively increased the proportional abundance of putative pathogens. Moreover, profound shifts in butyrate (-96 ± 6, -73 ± 24, and -34 ± 25%) and propionate (+13 ± 24, +88 ± 50, and +29 ± 16%) production were observed for these emulsifiers. Phylogenetic prediction indicated higher motility, which was, however, not confirmed by increased flagellin levels using the TLR5 reporter cell assay. We conclude that dietary emulsifiers can severely impact the gut microbiota, and this seems to be proportional to their emulsifying strength, rather than emulsifier type or origin. As biotechnological emulsifiers were especially more impactful than chemical emulsifiers, caution is warranted when considering them as more natural alternatives for clean label strategies.
Collapse
Affiliation(s)
- Lisa Miclotte
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Leen Rymenans
- Vlaams Instituut voor Biotechnologie (VIB) Nucleomics Core, Lab of Molecular Bacteriology – Rega, KULeuven, Ghent, Belgium
| | - Chris Callewaert
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Jeroen Raes
- Vlaams Instituut voor Biotechnologie (VIB) Nucleomics Core, Lab of Molecular Bacteriology – Rega, KULeuven, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Food Safety and Health, Ghent University, Ghent, Belgium
| | - John Van Camp
- Department of Food Technology, Food Safety and Health, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Greses S, Tomás-Pejó E, Gónzalez-Fernández C. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation. BIORESOURCE TECHNOLOGY 2020; 297:122486. [PMID: 31796382 DOI: 10.1016/j.biortech.2019.122486] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the feasibility of the anaerobic digestion as a sustainable valorisation strategy for volatile fatty acids production from agroindustrial waste (cucumber, tomato and lettuce). High bioconversion efficiencies were reached by operating the reactors at 25 °C, 3 g VS·d-1·L-1 with pH adjustment. Cucumber fermentation achieved the highest bioconversion (52.6%), whereas tomato degradation was the least efficient bioprocess (40.1%) due to the low pH (5.6) that partially inhibited the hydrolytic and acidogenic activities. In all cases, carboxylic acid profiles were mainly composed of volatile fatty acids with even carbon number. The developed microbial community exhibited high hydrolytic and acidogenic activities associated to carbohydrates degradation. This microbial population was dominated by Firmicutes phylum and showed a lack of acetogenic bacteria related with CH4 production, resulting in a remarkably high VFAs accumulation.
Collapse
Affiliation(s)
- Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain.
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain.
| | | |
Collapse
|
10
|
Planktonic and Sessile Artificial Colonic Microbiota Harbor Distinct Composition and Reestablish Differently upon Frozen and Freeze-Dried Long-Term Storage. mSystems 2020; 5:5/1/e00521-19. [PMID: 31964766 PMCID: PMC6977070 DOI: 10.1128/msystems.00521-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation has been successfully applied in the treatment of recurrent Clostridium difficile infection and has been suggested as an alternative therapy for other intestinal disorders such as inflammatory bowel disease or metabolic syndrome. “Artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation, but effective preservation strategies must be developed. In this study, we systematically investigated the response of sessile and planktonic artificial colonic microbiota to cryopreservation and lyophilization. We suggest that functional redundancy is an important factor in providing functional stability with respect to exposure to stress during processing and storage. Functional redundancy in compositionally reduced microbial systems may be considered when designing microbial products for therapy. Biofilm-associated, sessile communities represent the major bacterial lifestyle, whereas planktonic cells mainly appear during initial colonization of new surfaces. Previous research, mainly performed with pathogens, demonstrated increased environmental stress tolerance of biofilm-growing compared to planktonic bacteria. The lifestyle-specific stress response of colonic microbiota, both natural and fermentation produced, has not been addressed before. Planktonic and sessile “artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation in treating gastrointestinal disorders. We therefore characterized planktonic and sessile microbiota produced in two PolyFermS models inoculated with immobilized fecal microbiota and comparatively tested their levels of tolerance of frozen storage (–80°C) and freeze-dried storage (4°C) for 9 months to mimic preservation strategies for therapeutic applications. Sessile microbiota harbored next to shared taxa a unique community distinguishable from planktonic microbiota. Synergistetes and Proteobacteria were highly represented in sessile microbiota, while Firmicutes were more abundant in planktonic microbiota. The community structure and metabolic activity of both microbiota, monitored during standardized reactivation batch fermentations, were better preserved after frozen storage than dried storage, indicated by higher Bray-Curtis similarity and enhanced recovery of metabolite production. For both lifestyles, reestablishment of Bacteroidaceae was impaired after frozen and dried storage along with reduced propionate formation. In contrast, butyrate production was maintained after reactivation despite compositional rearrangements within the butyrate-producing community. Unexpectedly, the rate of recovery of metabolite production was lower after preservation of sessile than planktonic microbiota. We speculate that higher functional dependencies between microbes might have led to the lower stress tolerance of sessile than planktonic microbiota. IMPORTANCE Fecal microbiota transplantation has been successfully applied in the treatment of recurrent Clostridium difficile infection and has been suggested as an alternative therapy for other intestinal disorders such as inflammatory bowel disease or metabolic syndrome. “Artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation, but effective preservation strategies must be developed. In this study, we systematically investigated the response of sessile and planktonic artificial colonic microbiota to cryopreservation and lyophilization. We suggest that functional redundancy is an important factor in providing functional stability with respect to exposure to stress during processing and storage. Functional redundancy in compositionally reduced microbial systems may be considered when designing microbial products for therapy.
Collapse
|
11
|
Ferreira S, Pereira R, Liu F, Vilaça P, Rocha I. Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:230. [PMID: 31583016 PMCID: PMC6767645 DOI: 10.1186/s13068-019-1565-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/07/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND One of the European Union directives indicates that 10% of all fuels must be bio-synthesized by 2020. In this regard, biobutanol-natively produced by clostridial strains-poses as a promising alternative biofuel. One possible approach to overcome the difficulties of the industrial exploration of the native producers is the expression of more suitable pathways in robust microorganisms such as Escherichia coli. The enumeration of novel pathways is a powerful tool, allowing to identify non-obvious combinations of enzymes to produce a target compound. RESULTS This work describes the in silico driven design of E. coli strains able to produce butanol via 2-oxoglutarate by a novel pathway. This butanol pathway was generated by a hypergraph algorithm and selected from an initial set of 105,954 different routes by successively applying different filters, such as stoichiometric feasibility, size and novelty. The implementation of this pathway involved seven catalytic steps and required the insertion of nine heterologous genes from various sources in E. coli distributed in three plasmids. Expressing butanol genes in E. coli K12 and cultivation in High-Density Medium formulation seem to favor butanol accumulation via the 2-oxoglutarate pathway. The maximum butanol titer obtained was 85 ± 1 mg L-1 by cultivating the cells in bioreactors. CONCLUSIONS In this work, we were able to successfully translate the computational analysis into in vivo applications, designing novel strains of E. coli able to produce n-butanol via an innovative pathway. Our results demonstrate that enumeration algorithms can broad the spectrum of butanol producing pathways. This validation encourages further research to other target compounds.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Pereira
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
- Present Address: Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Filipe Liu
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Present Address: Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL USA
| | - Paulo Vilaça
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
12
|
Metzler-Zebeli BU, Newman MA, Grüll D, Zebeli Q. Functional adaptations in the cecal and colonic metagenomes associated with the consumption of transglycosylated starch in a pig model. BMC Microbiol 2019; 19:87. [PMID: 31046662 PMCID: PMC6498482 DOI: 10.1186/s12866-019-1462-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/22/2019] [Indexed: 01/19/2023] Open
Abstract
Background Both phylogeny and functional capabilities within the gut microbiota populations are of great importance for influencing host health. As a novel type of resistant starch, transglycosylated starch (TGS) modifies the microbial community and metabolite profiles along the porcine gut, but little is known about the related functional adaptations in key metabolic pathways and their taxonomic identity. Results Metagenomic sequencing was used to characterize the functional alterations in the cecal and colonic microbiomes of growing pigs fed TGS or control starch (CON) diets for 10 days (n = 8/diet). Bacterial communities were clearly distinguishable at taxonomic and functional level based on the dietary starch, with effects being similar at both gut sites. Cecal and colonic samples from TGS-fed pigs were enriched in Prevotella, Bacteroides, Acidaminoccus and Veillonella, whereas Treponema, Ruminococcus, and Aeromonas declined at both gut sites compared to CON-fed pigs (log2 fold change > ±1; p < 0.001 (q < 0.05)). This was associated with increased enzymatic capacities for amino acid metabolism, galactose, fructose and mannose metabolism, pentose and glucuronate interconversions, citrate cycle and vitamin metabolism for samples from TGS-fed pigs. However, TGS-fed pigs comprised fewer reads for starch and sucrose metabolism and genetic information processing. Changes in key catabolic steps were found to be the result of changes in taxa associated with each type of starch. Functional analysis indicated steps in the breakdown of TGS by the action of α- and β-galactosidases, which mainly belonged to Bacteroides and Prevotella. Reads mapped to alpha-amylase were less frequent in TGS- compared to CON-fed pigs, with the major source of this gene pool being Bacillus, Aeromonas and Streptococcus. Due to the taxonomic shifts, gene abundances of potent stimulants of the mucosal innate immune response were altered by the starches. The cecal and colonic metagenomes of TGS-fed pigs comprised more reads annotated in lipopolysaccharides biosynthesis, whereas they became depleted of genes for flagellar assembly compared to CON-fed pigs. Conclusions Metagenomic sequencing revealed distinct cecal and colonic bacterial communities in CON- and TGS-fed pigs, with strong discrimination among samples by functional capacities related to the respective starch in each pig’s diet. Electronic supplementary material The online version of this article (10.1186/s12866-019-1462-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Department for Farm Animals and Veterinary Public Health , Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| | - Monica A Newman
- Department for Farm Animals and Veterinary Public Health , Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Dietmar Grüll
- Agrana Research & Innovation Center GmbH, 3430, Tulln, Austria
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health , Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| |
Collapse
|
13
|
Odeyemi OA, Burke CM, Bolch CCJ, Stanley R. Spoilage microbial community profiling by 16S rRNA amplicon sequencing of modified atmosphere packaged live mussels stored at 4 oC. Food Res Int 2018; 121:568-576. [PMID: 31108782 DOI: 10.1016/j.foodres.2018.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
There is little information on the microbial communities associated with modified atmosphere (MA)-packaged live mussels. There is also a dearth of information on how pre-packaging depuration modifies the microbial communities and spoilage of live mussels. Amplicon sequencing was used to describe spoilage microbial succession in MA-packaged live mussels during storage at 4 °C. Proteobacteria, Cyanobacteria and Firmicutes were the three major phyla observed in the mussel meat and pouch water of undepurated and depurated mussels. Among these phyla, Cyanobacteria was more predominant on day 0 in mussel meat of undepurated and depurated mussels while Proteobacteria was predominant in commercially-depurated mussels. Synechococcus was apparently dominant on days 0-7 in the meat of undepurated mussels and days 0-10 in depurated mussels. Shewanella was dominant on day 0 in commercially-depurated mussels and dominant on day 15 in undepurated while Acidaminococcus was dominant in depurated mussels on day 15. Psychromonas was observed to be dominant in commercially-depurated mussels on day 7 and further shifted to Acinetobacter by day 10 and 15. In the pouch water, Acinetobacter was dominant throughout the storage days in undepurated mussels while Psychrobacter was predominant in both depurated and commercially-depurated mussels. This study demonstrated the impact of depuration on the microbiota and the spoilage mechanism of MA-packaged live mussels. Shewanella was easily removed through depuration. However, spoilage bacteria such as Acidaminococcus could not be easily removed although they are not important at the beginning but grew at the end. Pouch water contributed suitable biological medium for the growth of Acinetobacter and Psychrobacter and both enhanced the growth of spoilage bacteria such as Shewanella and Acidaminococcus.
Collapse
Affiliation(s)
- Olumide A Odeyemi
- Ecology and Biodiversity Centre, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, Australia.
| | - Christopher M Burke
- Ecology and Biodiversity Centre, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, Australia
| | - Christopher C J Bolch
- Ecology and Biodiversity Centre, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, Australia
| | - Roger Stanley
- Centre for Food Innovation, Tasmania Institute of Agriculture (TIA), University of Tasmania, Launceston, Australia
| |
Collapse
|
14
|
Rands CM, Starikova EV, Brüssow H, Kriventseva EV, Govorun VM, Zdobnov EM. ACI‐1 beta‐lactamase is widespread across human gut microbiomes in Negativicutes due to transposons harboured by tailed prophages. Environ Microbiol 2018; 20:2288-2300. [DOI: 10.1111/1462-2920.14276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Chris M. Rands
- Department of Genetic Medicine and DevelopmentUniversity of Geneva Medical School and Swiss Institute of Bioinformatics Geneva Switzerland
| | - Elizaveta V. Starikova
- Department of Molecular Biology and GeneticsFederal Research and Clinical Center of Physical‐Chemical Medicine Moscow, Russian Federation
| | - Harald Brüssow
- KU Leuven, Department of BiosystemsLaboratory of Gene Technology Leuven Belgium
| | - Evgenia V. Kriventseva
- Department of Genetic Medicine and DevelopmentUniversity of Geneva Medical School and Swiss Institute of Bioinformatics Geneva Switzerland
| | - Vadim M. Govorun
- Department of Molecular Biology and GeneticsFederal Research and Clinical Center of Physical‐Chemical Medicine Moscow, Russian Federation
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and DevelopmentUniversity of Geneva Medical School and Swiss Institute of Bioinformatics Geneva Switzerland
| |
Collapse
|
15
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD + (Rnf) as Electron Acceptors: A Historical Review. Front Microbiol 2018; 9:401. [PMID: 29593673 PMCID: PMC5861303 DOI: 10.3389/fmicb.2018.00401] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction of ferredoxins (Fd) and flavodoxins (Fld). The first example was described in 2008 when it was found that the butyryl-CoA dehydrogenase-electron-transferring flavoprotein complex (Bcd-EtfAB) of Clostridium kluyveri couples the endergonic reduction of ferredoxin (E0′ = −420 mV) with NADH (−320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (−10 mV) with NADH. The discovery was followed by the finding of an electron-bifurcating Fd- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Thermotoga maritima (2009), Fd-dependent transhydrogenase (NfnAB) in various bacteria and archaea (2010), Fd- and H2-dependent heterodisulfide reductase (MvhADG-HdrABC) in methanogenic archaea (2011), Fd- and NADH-dependent caffeyl-CoA reductase (CarCDE) in Acetobacterium woodii (2013), Fd- and NAD-dependent formate dehydrogenase (HylABC-FdhF2) in Clostridium acidi-urici (2013), Fd- and NADP-dependent [FeFe]-hydrogenase (HytA-E) in Clostridium autoethanogrenum (2013), Fd(?)- and NADH-dependent methylene-tetrahydrofolate reductase (MetFV-HdrABC-MvhD) in Moorella thermoacetica (2014), Fd- and NAD-dependent lactate dehydrogenase (LctBCD) in A. woodii (2015), Fd- and F420H2-dependent heterodisulfide reductase (HdrA2B2C2) in Methanosarcina acetivorans (2017), and Fd- and NADH-dependent ubiquinol reductase (FixABCX) in Azotobacter vinelandii (2017). The electron-bifurcating flavoprotein complexes known to date fall into four groups that have evolved independently, namely those containing EtfAB (CarED, LctCB, FixBA) with bound FAD, a NuoF homolog (HydB, HytB, or HylB) harboring FMN, NfnB with bound FAD, or HdrA harboring FAD. All these flavoproteins are cytoplasmic except for the membrane-associated protein FixABCX. The organisms—in which they have been found—are strictly anaerobic microorganisms except for the aerobe A. vinelandii. The electron-bifurcating complexes are involved in a variety of processes such as butyric acid fermentation, methanogenesis, acetogenesis, anaerobic lactate oxidation, dissimilatory sulfate reduction, anaerobic- dearomatization, nitrogen fixation, and CO2 fixation. They contribute to energy conservation via the energy-converting ferredoxin: NAD+ reductase complex Rnf or the energy-converting ferredoxin-dependent hydrogenase complex Ech. This Review describes how this mechanism was discovered.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratory for Microbiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
16
|
|
17
|
Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, Guttman DS, Griffiths A, Panaccione R, Otley A, Xu L, Shestopaloff K, Moreno-Hagelsieb G, Paterson AD, Croitoru K. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet 2016; 48:1413-1417. [PMID: 27694960 DOI: 10.1038/ng.3693] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Intestinal microbiota is known to be important in health and disease. Its composition is influenced by both environmental and host factors. Few large-scale studies have evaluated the association between host genetic variation and the composition of microbiota. We recruited a cohort of 1,561 healthy individuals, of whom 270 belong in 123 families, and found that almost one-third of fecal bacterial taxa were heritable. In addition, we identified 58 SNPs associated with the relative abundance of 33 taxa in 1,098 discovery subjects. Among these, four loci were replicated in a second cohort of 463 subjects: rs62171178 (nearest gene UBR3) associated with Rikenellaceae, rs1394174 (CNTN6) associated with Faecalibacterium, rs59846192 (DMRTB1) associated with Lachnospira, and rs28473221 (SALL3) associated with Eubacterium. After correction for multiple testing, 6 of the 58 associations remained significant, one of which replicated. These results identify associations between specific genetic variants and the gut microbiome.
Collapse
Affiliation(s)
- Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - David Kevans
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Anne Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Remo Panaccione
- Inflammatory Bowel Disease Clinic, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Anthony Otley
- Departement of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Lizhen Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology, The Hospital for Sick Children Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Konstantin Shestopaloff
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Andrew D Paterson
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology, The Hospital for Sick Children Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Chowdhury NP, Klomann K, Seubert A, Buckel W. Reduction of Flavodoxin by Electron Bifurcation and Sodium Ion-dependent Reoxidation by NAD+ Catalyzed by Ferredoxin-NAD+ Reductase (Rnf). J Biol Chem 2016; 291:11993-2002. [PMID: 27048649 DOI: 10.1074/jbc.m116.726299] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
Electron-transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) from Acidaminococcus fermentans catalyze the endergonic reduction of ferredoxin by NADH, which is also driven by the concomitant reduction of crotonyl-CoA by NADH, a process called electron bifurcation. Here we show that recombinant flavodoxin from A. fermentans produced in Escherichia coli can replace ferredoxin with almost equal efficiency. After complete reduction of the yellow quinone to the blue semiquinone, a second 1.4 times faster electron transfer affords the colorless hydroquinone. Mediated by a hydrogenase, protons reoxidize the fully reduced flavodoxin or ferredoxin to the semi-reduced species. In this hydrogen-generating system, both electron carriers act catalytically with apparent Km = 0.26 μm ferredoxin or 0.42 μm flavodoxin. Membrane preparations of A. fermentans contain a highly active ferredoxin/flavodoxin-NAD(+) reductase (Rnf) that catalyzes the irreversible reduction of flavodoxin by NADH to the blue semiquinone. Using flavodoxin hydroquinone or reduced ferredoxin obtained by electron bifurcation, Rnf can be measured in the forward direction, whereby one NADH is recycled, resulting in the simple equation: crotonyl-CoA + NADH + H(+) = butyryl-CoA + NAD(+) with Km = 1.4 μm ferredoxin or 2.0 μm flavodoxin. This reaction requires Na(+) (Km = 0.12 mm) or Li(+) (Km = 0.25 mm) for activity, indicating that Rnf acts as a Na(+) pump. The redox potential of the quinone/semiquinone couple of flavodoxin (Fld) is much higher than that of the semiquinone/hydroquinone couple. With free riboflavin, the opposite is the case. Based on this behavior, we refine our previous mechanism of electron bifurcation.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro and the Max-Plank-Institut für terrestrische Mikrobiologie, 35043 Marburg, Germany
| | - Katharina Klomann
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro and
| | - Andreas Seubert
- the Fachbereich Chemie, Philipps-Universität, 35032 Marburg, and
| | - Wolfgang Buckel
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro and the Max-Plank-Institut für terrestrische Mikrobiologie, 35043 Marburg, Germany
| |
Collapse
|
19
|
Chowdhury NP, Mowafy AM, Demmer JK, Upadhyay V, Koelzer S, Jayamani E, Kahnt J, Hornung M, Demmer U, Ermler U, Buckel W. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J Biol Chem 2013; 289:5145-57. [PMID: 24379410 DOI: 10.1074/jbc.m113.521013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013; 15:2631-41. [PMID: 23834245 DOI: 10.1111/1462-2920.12173] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The class Clostridia in the phylum Firmicutes (formerly low-G+C Gram-positive bacteria) includes diverse bacteria of medical, environmental and biotechnological importance. The Selenomonas-Megasphaera-Sporomusa branch, which unifies members of the Firmicutes with Gram-negative-type cell envelopes, was recently moved from Clostridia to a separate class Negativicutes. However, draft genome sequences of the spore-forming members of the Negativicutes revealed typically clostridial sets of sporulation genes. To address this and other questions in clostridial phylogeny, we have compared a phylogenetic tree for a concatenated set of 50 widespread ribosomal proteins with the trees for beta subunits of the RNA polymerase (RpoB) and DNA gyrase (GyrB) and with the 16S rRNA-based phylogeny. The results obtained by these methods showed remarkable consistency, suggesting that they reflect the true evolutionary history of these bacteria. These data put the Selenomonas-Megasphaera-Sporomusa group back within the Clostridia. They also support placement of Clostridium difficile and its close relatives within the family Peptostreptococcaceae; we suggest resolving the long-standing naming conundrum by renaming it Peptoclostridium difficile. These data also indicate the existence of a group of cellulolytic clostridia that belong to the family Ruminococcaceae. As a tentative solution to resolve the current taxonomical problems, we propose assigning 78 validly described Clostridium species that clearly fall outside the family Clostridiaceae to six new genera: Peptoclostridium, Lachnoclostridium, Ruminiclostridium, Erysipelatoclostridium, Gottschalkia and Tyzzerella. This work reaffirms that 16S rRNA and ribosomal protein sequences are better indicators of evolutionary proximity than phenotypic traits, even such key ones as the structure of the cell envelope and Gram-staining pattern.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | | |
Collapse
|
21
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
22
|
Yu X, Bresser J, Schall I, Djurdjevic I, Buckel W, Wang X, Engel PC. Development of a satisfactory and general continuous assay for aminotransferases by coupling with (R)-2-hydroxyglutarate dehydrogenase. Anal Biochem 2012; 431:127-31. [PMID: 23000002 DOI: 10.1016/j.ab.2012.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
A continuous general spectrophotometric assay for measuring the activity of aminotransferases has been developed. It is based on the transamination of a keto compound (amino acceptor) and l-glutamate (amino donor), yielding the corresponding amino compound and 2-oxoglutarate. The rate of formation of 2-oxoglutarate is measured in a coupled reaction with overproduced recombinant nicotinamide adenine dinucleotide (NAD(+))-dependent (R)-2-hydroxyglutarate dehydrogenase from Acidaminococcus fermentans, with the rate of absorbance decrease at 340nm indirectly reflecting the aminotransferase activity. This new method allows continuous monitoring of the course of transamination. Because glutamate and 2-oxoglutarate are obligatory participants in most biological transamination reactions, a coupled assay based on measuring the formation of 2-oxoglutarate has very wide applicability. The article demonstrates its utility with branched-chain amino acid aminotransferase and l-valine:pyruvate aminotransferase.
Collapse
Affiliation(s)
- Xuejing Yu
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
23
|
Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:94-113. [PMID: 22800682 DOI: 10.1016/j.bbabio.2012.07.002] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/21/2023]
Abstract
The review describes four flavin-containing cytoplasmatic multienzyme complexes from anaerobic bacteria and archaea that catalyze the reduction of the low potential ferredoxin by electron donors with higher potentials, such as NAD(P)H or H(2) at ≤ 100 kPa. These endergonic reactions are driven by concomitant oxidation of the same donor with higher potential acceptors such as crotonyl-CoA, NAD(+) or heterodisulfide (CoM-S-S-CoB). The process called flavin-based electron bifurcation (FBEB) can be regarded as a third mode of energy conservation in addition to substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP). FBEB has been detected in the clostridial butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BcdA-EtfBC), the multisubunit [FeFe]hydrogenase from Thermotoga maritima (HydABC) and from acetogenic bacteria, the [NiFe]hydrogenase/heterodisulfide reductase (MvhADG-HdrABC) from methanogenic archaea, and the transhydrogenase (NfnAB) from many Gram positive and Gram negative bacteria and from anaerobic archaea. The Bcd/EtfBC complex that catalyzes electron bifurcation from NADH to the low potential ferredoxin and to the high potential crotonyl-CoA has already been studied in some detail. The bifurcating protein most likely is EtfBC, which in each subunit (βγ) contains one FAD. In analogy to the bifurcating complex III of the mitochondrial respiratory chain and with the help of the structure of the human ETF, we propose a conformational change by which γ-FADH(-) in EtfBC approaches β-FAD to enable the bifurcating one-electron transfer. The ferredoxin reduced in one of the four electron bifurcating reactions can regenerate H(2) or NADPH, reduce CO(2) in acetogenic bacteria and methanogenic archaea, or is converted to ΔμH(+)/Na(+) by the membrane-associated enzyme complexes Rnf and Ech, whereby NADH and H(2) are recycled, respectively. The mainly bacterial Rnf complexes couple ferredoxin oxidation by NAD(+) with proton/sodium ion translocation and the more diverse energy converting [NiFe]hydrogenases (Ech) do the same, whereby NAD(+) is replaced by H(+). Many organisms also use Rnf and Ech in the reverse direction to reduce ferredoxin driven by ΔμH(+)/Na(+). Finally examples are shown, in which the four bifurcating multienzyme complexes alone or together with Rnf and Ech are integrated into energy metabolisms of nine anaerobes. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, and Fachbereich Biologie, Philipps-Universität, Marburg, Germany.
| | | |
Collapse
|