1
|
Development and Cross-Amplification of Microsatellite Markers for Micrurus surinamensis (Elapidae). J HERPETOL 2021. [DOI: 10.1670/19-081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent evolution and different functional roles. Sci Rep 2019; 9:15459. [PMID: 31664097 PMCID: PMC6820872 DOI: 10.1038/s41598-019-51863-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/09/2019] [Indexed: 11/24/2022] Open
Abstract
To better understand PBI-DdeI satellite DNA located in the centromeric region of python, molecular evolution analysis was conducted on 40 snake species. A ladder-like pattern of DNA bands with repetition of the 194–210 bp monomer was observed in 15 species using PCR. Molecular cloning was performed to obtain 97 AT-rich monomer sequences. Phylogenetic and network analyses showed three PBI-DdeI subfamilies with sequences grouped in species-specific clusters, suggesting rapid evolution. Slow evolution was found in eight species with shared PBI-DdeI sequences, suggesting recent species diversification, allowing PBI-DdeI no time to diverge, with limited homogenization and fixation processes. Quantitative real-time PCR showed large differences in copy number between Python bivittatus and other snakes, consistent with repeat scanning of whole genome sequences. Copy numbers were significantly higher in female Naja kaouthia than in males, concurring with chromosomal distribution of PBI-DdeI specifically localized to female W chromosomes. PBI-DdeI might act as an evolutionary driver with several repeats to promote W chromosome differentiation and heterochromatinization in N. kaouthia. Analysis revealed PBI-DdeI with a reduced copy number, compared to P. bivittatus, in most snakes studied, and it is possible that it subsequently dispersed and amplified on W chromosomes with different functional roles in N. kaouthia.
Collapse
|
3
|
Schott RK, Van Nynatten A, Card DC, Castoe TA, S W Chang B. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Mol Biol Evol 2019; 35:1376-1389. [PMID: 29800394 DOI: 10.1093/molbev/msy025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Daren C Card
- Department of Biology, University of Texas, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, TX
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Yanqing C, Bo W, Ping W, Bisheng H, Hegang L, Chao X, Mingli W, Nili W, Di L, Zhigang H, Shilin C. Rapid identification of common medicinal snakes and their adulterants using the Bar-HRM analysis method. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:367-374. [PMID: 30686100 DOI: 10.1080/24701394.2018.1532417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective identification methods for snake species are lacking, exacerbating the extermination of medicinal and commercially valuable snake species. Hence, it is imperative to find fast and reliable methods to distinguish snake samples available on the market. Seventy-three samples from four families belonging to 13 genera were collected in China and found to contain common medicinal snakes and their adulterants. Cytochrome oxidase I (COI) was utilized as a DNA barcode to analyse these common snakes, and a DNA mini-barcode was employed for fast detection. Then, the DNA mini-barcode assays were coupled with a high-resolution melting (HRM) analysis (Bar-HRM) to realize the rapid discrimination of these snake species. The results showed the power of DNA barcoding with COI, which was capable of distinguishing all collected snake samples, and the combined Bar-HRM method can successfully identify the adulterants and different snake species. In particular, Bar-HRM revealed Bungarus fasciatus adulterants in B. multicinctus at concentrations as low as 1.6%. Moreover, the results of the study confirmed the effectiveness of the technique in terms of the rapid identification of snakes, which has great potential for ensuring the safety of commercially valuable snake species.
Collapse
Affiliation(s)
- Chen Yanqing
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wang Bo
- b Hubei Institute for Drug Control , Wuhan , China
| | - Wang Ping
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Huang Bisheng
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Liu Hegang
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Xiong Chao
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wu Mingli
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wang Nili
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Liu Di
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Hu Zhigang
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Chen Shilin
- d Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| |
Collapse
|
5
|
Roscito JG, Sameith K, Pippel M, Francoijs KJ, Winkler S, Dahl A, Papoutsoglou G, Myers G, Hiller M. The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly. Gigascience 2018; 7:5202467. [PMID: 30481296 PMCID: PMC6304105 DOI: 10.1093/gigascience/giy141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background Reptiles are a species-rich group with great phenotypic and life history diversity but are highly underrepresented among the vertebrate species with sequenced genomes. Results Here, we report a high-quality genome assembly of the tegu lizard, Salvator merianae, the first lacertoid with a sequenced genome. We combined 74X Illumina short-read, 29.8X Pacific Biosciences long-read, and optical mapping data to generate a high-quality assembly with a scaffold N50 value of 55.4 Mb. The contig N50 value of this assembly is 521 Kb, making it the most contiguous reptile assembly so far. We show that the tegu assembly has the highest completeness of coding genes and conserved non-exonic elements (CNEs) compared to other reptiles. Furthermore, the tegu assembly has the highest number of evolutionarily conserved CNE pairs, corroborating a high assembly contiguity in intergenic regions. As in other reptiles, long interspersed nuclear elements comprise the most abundant transposon class. We used transcriptomic data, homology- and de novo gene predictions to annotate 22,413 coding genes, of which 16,995 (76%) likely have human orthologs as inferred by CESAR-derived gene mappings. Finally, we generated a multiple genome alignment comprising 10 squamates and 7 other amniote species and identified conserved regions that are under evolutionary constraint. CNEs cover 38 Mb (1.8%) of the tegu genome, with 3.3 Mb in these elements being squamate specific. In contrast to placental mammal-specific CNEs, very few of these squamate-specific CNEs (<20 Kb) overlap transposons, highlighting a difference in how lineage-specific CNEs originated in these two clades. Conclusions The tegu lizard genome together with the multiple genome alignment and comprehensive conserved element datasets provide a valuable resource for comparative genomic studies of reptiles and other amniotes.
Collapse
Affiliation(s)
- Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Katrin Sameith
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Kees-Jan Francoijs
- BioNano Genomics, Towne Centre Drive Suite, 100, 92121, San Diego, CA, USA
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Andreas Dahl
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Georg Papoutsoglou
- BioNano Genomics, Towne Centre Drive Suite, 100, 92121, San Diego, CA, USA
| | - Gene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| |
Collapse
|
6
|
Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proc Natl Acad Sci U S A 2018; 115:8406-8411. [PMID: 30065117 DOI: 10.1073/pnas.1805348115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several previous genomic studies have focused on adaptation to high elevations, but these investigations have been largely limited to endotherms. Snakes of the genus Thermophis are endemic to the Tibetan plateau and therefore present an opportunity to study high-elevation adaptations in ectotherms. Here, we report the de novo assembly of the genome of a Tibetan hot-spring snake (Thermophis baileyi) and then compare its genome to the genomes of the other two species of Thermophis, as well as to the genomes of two related species of snakes that occur at lower elevations. We identify 308 putative genes that appear to be under positive selection in Thermophis We also identified genes with shared amino acid replacements in the high-elevation hot-spring snakes compared with snakes and lizards that live at low elevations, including the genes for proteins involved in DNA damage repair (FEN1) and response to hypoxia (EPAS1). Functional assays of the FEN1 alleles reveal that the Thermophis allele is more stable under UV radiation than is the ancestral allele found in low-elevation lizards and snakes. Functional assays of EPAS1 alleles suggest that the Thermophis protein has lower transactivation activity than the low-elevation forms. Our analysis identifies some convergent genetic mechanisms in high-elevation adaptation between endotherms (based on studies of mammals) and ectotherms (based on our studies of Thermophis).
Collapse
|
7
|
Beta-defensin genes of the Colubridae snakes Phalotris mertensi , Thamnodynastes hypoconia , and T. strigatus. Toxicon 2018; 146:124-128. [DOI: 10.1016/j.toxicon.2018.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/16/2023]
|
8
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
9
|
Schott RK, Panesar B, Card DC, Preston M, Castoe TA, Chang BS. Targeted Capture of Complete Coding Regions across Divergent Species. Genome Biol Evol 2017; 9:398-414. [PMID: 28137744 PMCID: PMC5381602 DOI: 10.1093/gbe/evx005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Despite continued advances in sequencing technologies, there is a need for methods that can efficiently sequence large numbers of genes from diverse species. One approach to accomplish this is targeted capture (hybrid enrichment). While these methods are well established for genome resequencing projects, cross-species capture strategies are still being developed and generally focus on the capture of conserved regions, rather than complete coding regions from specific genes of interest. The resulting data is thus useful for phylogenetic studies, but the wealth of comparative data that could be used for evolutionary and functional studies is lost. Here, we design and implement a targeted capture method that enables recovery of complete coding regions across broad taxonomic scales. Capture probes were designed from multiple reference species and extensively tiled in order to facilitate cross-species capture. Using novel bioinformatics pipelines we were able to recover nearly all of the targeted genes with high completeness from species that were up to 200 myr divergent. Increased probe diversity and tiling for a subset of genes had a large positive effect on both recovery and completeness. The resulting data produced an accurate species tree, but importantly this same data can also be applied to studies of molecular evolution and function that will allow researchers to ask larger questions in broader phylogenetic contexts. Our method demonstrates the utility of cross-species approaches for the capture of full length coding sequences, and will substantially improve the ability for researchers to conduct large-scale comparative studies of molecular evolution and function.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Bhawandeep Panesar
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Daren C. Card
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Matthew Preston
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
- Centre for the Analysis of Genomes and Function, University of Toronto, Canada
| |
Collapse
|
10
|
Fasting for 21days leads to changes in adipose tissue and liver physiology in juvenile checkered garter snakes (Thamnophis marcianus). Comp Biochem Physiol A Mol Integr Physiol 2015; 190:68-74. [PMID: 26358832 DOI: 10.1016/j.cbpa.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022]
Abstract
Snakes often undergo periods of prolonged fasting and, under certain conditions, can survive years without food. Despite this unique phenomenon, there are relatively few reports of the physiological adaptations to fasting in snakes. At post-prandial day 1 (fed) or 21 (fasting), brain, liver, and adipose tissues were collected from juvenile checkered garter snakes (Thamnophis marcianus). There was greater glycerol-3-phosphate dehydrogenase (G3PDH)-specific activity in the liver of fasted than fed snakes (P=0.01). The mRNA abundance of various fat metabolism-associated factors was measured in brain, liver, and adipose tissue. Lipoprotein lipase (LPL) mRNA was greater in fasted than fed snakes in the brain (P=0.04). Adipose triglyceride lipase (ATGL; P=0.006) mRNA was greater in the liver of fasted than fed snakes. In adipose tissue, expression of peroxisome proliferator-activated receptor (PPAR)γ (P=0.01), and fatty acid binding protein 4 (P=0.03) was greater in fed than fasted snakes. Analysis of adipocyte morphology revealed that cross-sectional area (P=0.095) and diameter (P=0.27) were not significantly different between fed and fasted snakes. Results suggest that mean adipocyte area can be preserved during fasting by dampening lipid biosynthesis while not changing rates of lipid hydrolysis. In the liver, however, extensive lipid remodeling may provide energy and lipoproteins to maintain lipid structural integrity during energy restriction. Because the duration of fasting was not sufficient to change adipocyte size, results suggest that the liver is important as a short-term provider of energy in the snake.
Collapse
|
11
|
A plea for standardized nomenclature of snake venom toxins. Toxicon 2014; 90:351-3. [DOI: 10.1016/j.toxicon.2014.08.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/26/2023]
|
12
|
Abstract
In the September issue of Cell Research, Wan et al. analyze the Chinese Alligator genome and identify multiple instances of positively-selected changes in protein-coding genes and expansions of multi-gene families that appear to explain suites of phenotypes central to the unique habits and physiology of crocodilian reptiles. They demonstrate the effectiveness of comparative systems genomics in integrating information from comparative genomics, molecular evolution, and systems biology to understand the evolutionary dynamics of complex systems.
Collapse
|
13
|
Evidence of Hybridization between Common Gartersnakes (Thamnophis sirtalis) and Butler's Gartersnakes (Thamnophis butleri) in Wisconsin, USA. J HERPETOL 2013. [DOI: 10.1670/12-057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 2012; 7:e53027. [PMID: 23300852 PMCID: PMC3534110 DOI: 10.1371/journal.pone.0053027] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022] Open
Abstract
Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.
Collapse
|
15
|
Miller HC, Biggs PJ, Voelckel C, Nelson NJ. De novo sequence assembly and characterisation of a partial transcriptome for an evolutionarily distinct reptile, the tuatara (Sphenodon punctatus). BMC Genomics 2012; 13:439. [PMID: 22938396 PMCID: PMC3478169 DOI: 10.1186/1471-2164-13-439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/24/2012] [Indexed: 02/08/2023] Open
Abstract
Background The tuatara (Sphenodon punctatus) is a species of extraordinary zoological interest, being the only surviving member of an entire order of reptiles which diverged early in amniote evolution. In addition to their unique phylogenetic placement, many aspects of tuatara biology, including temperature-dependent sex determination, cold adaptation and extreme longevity have the potential to inform studies of genome evolution and development. Despite increasing interest in the tuatara genome, genomic resources for the species are still very limited. We aimed to address this by assembling a transcriptome for tuatara from an early-stage embryo, which will provide a resource for genome annotation, molecular marker development and studies of development and adaptation in tuatara. Results We obtained 30 million paired-end 50 bp reads from an Illumina Genome Analyzer and assembled them with Velvet and Oases using a range of kmers. After removing redundancy and filtering out low quality transcripts, our transcriptome dataset contained 32911 transcripts, with an N50 of 675 and a mean length of 451 bp. Almost 50% (15965) of these transcripts could be annotated by comparison with the NCBI non-redundant (NR) protein database or the chicken, green anole and zebrafish UniGene sets. A scan of candidate genes and repetitive elements revealed genes involved in immune function, sex differentiation and temperature-sensitivity, as well as over 200 microsatellite markers. Conclusions This dataset represents a major increase in genomic resources for the tuatara, increasing the number of annotated gene sequences from just 60 to almost 16,000. This will facilitate future research in sex determination, genome evolution, local adaptation and population genetics of tuatara, as well as inform studies on amniote evolution.
Collapse
Affiliation(s)
- Hilary C Miller
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | | | | | | |
Collapse
|
16
|
Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollock DD. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS One 2012; 7:e30953. [PMID: 22348032 PMCID: PMC3279355 DOI: 10.1371/journal.pone.0030953] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/27/2011] [Indexed: 12/01/2022] Open
Abstract
Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct “Seq-to-SSR” approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample – a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable.
Collapse
Affiliation(s)
- Todd A. Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alexander W. Poole
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - A. P. Jason de Koning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kenneth L. Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Diana F. Tomback
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, United States of America
| | - Sara J. Oyler-McCance
- United States Geological Survey – Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Jennifer A. Fike
- United States Geological Survey – Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Stacey L. Lance
- University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina, United States of America
| | - Jeffrey W. Streicher
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Eric N. Smith
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
17
|
St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed'hom B, Abzhanov A, Burgess SC, Cooksey AM, Castoe TA, Crawford NG, Densmore LD, Drew JC, Edwards SV, Faircloth BC, Fujita MK, Greenwold MJ, Hoffmann FG, Howard JM, Iguchi T, Janes DE, Khan SY, Kohno S, de Koning AJ, Lance SL, McCarthy FM, McCormack JE, Merchant ME, Peterson DG, Pollock DD, Pourmand N, Raney BJ, Roessler KA, Sanford JR, Sawyer RH, Schmidt CJ, Triplett EW, Tuberville TD, Venegas-Anaya M, Howard JT, Jarvis ED, Guillette LJ, Glenn TC, Green RE, Ray DA. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 2012; 13:415. [PMID: 22293439 PMCID: PMC3334581 DOI: 10.1186/gb-2012-13-1-415] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.
Collapse
|
18
|
|
19
|
Affiliation(s)
- George M Garrity
- Department of Microbiology and Molecular Genetics, Michigan State University
| |
Collapse
|
20
|
Castoe TA, Fox SE, Jason de Koning A, Poole AW, Daza JM, Smith EN, Mockler TC, Secor SM, Pollock DD. A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus). BMC Res Notes 2011; 4:310. [PMID: 21867488 PMCID: PMC3173347 DOI: 10.1186/1756-0500-4-310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/25/2011] [Indexed: 01/08/2023] Open
Abstract
Background Snakes provide a unique vertebrate system for studying a diversity of extreme adaptations, including those related to development, metabolism, physiology, and venom. Despite their importance as research models, genomic resources for snakes are few. Among snakes, the Burmese python is the premier model for studying extremes of metabolic fluctuation and physiological remodelling. In this species, the consumption of large infrequent meals can induce a 40-fold increase in metabolic rate and more than a doubling in size of some organs. To provide a foundation for research utilizing the python, our aim was to assemble and annotate a transcriptome reference from the heart and liver. To accomplish this aim, we used the 454-FLX sequencing platform to collect sequence data from multiple cDNA libraries. Results We collected nearly 1 million 454 sequence reads, and assembled these into 37,245 contigs with a combined length of 13,409,006 bp. To identify known genes, these contigs were compared to chicken and lizard gene sets, and to all Genbank sequences. A total of 13,286 of these contigs were annotated based on similarity to known genes or Genbank sequences. We used gene ontology (GO) assignments to characterize the types of genes in this transcriptome resource. The raw data, transcript contig assembly, and transcript annotations are made available online for use by the broader research community. Conclusion These data should facilitate future studies using pythons and snakes in general, helping to further contribute to the utilization of snakes as a model evolutionary and physiological system. This sequence collection represents a major genomic resource for the Burmese python, and the large number of transcript sequences characterized should contribute to future research in this and other snake species.
Collapse
Affiliation(s)
- Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Castoe TA, de Koning JAP, Hall KT, Yokoyama KD, Gu W, Smith EN, Feschotte C, Uetz P, Ray DA, Dobry J, Bogden R, Mackessy SP, Bronikowski AM, Warren WC, Secor SM, Pollock DD. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biol 2011; 12:406. [PMID: 21801464 PMCID: PMC3218823 DOI: 10.1186/gb-2011-12-7-406] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Consortium for Snake Genomics is in the process of sequencing the genome and creating transcriptomic resources for the Burmese python. Here, we describe how this will be done, what analyses this work will include, and provide a timeline.
Collapse
|
22
|
Field D, Sterk P, Kottmann R. A Call for Papers for the second special issue of SIGS from the Genomic Standards Consortium. Stand Genomic Sci 2011. [PMCID: PMC3111996 DOI: 10.4056/sigs.1674461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Dawn Field
- 1NERC Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, United Kingdom
| | - Peter Sterk
- 2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Renzo Kottmann
- 3Microbial Genomics Group, Max Planck Institute for Marine Microbiology and Jacobs University Bremen, Bremen, Germany
| |
Collapse
|