1
|
Ali R, Chaluvadi SR, Wang X, Hazzouri KM, Sudalaimuthuasari N, Rafi M, Al-Nuaimi M, Sasi S, Antepenko E, Bennetzen JL, Amiri KMA. Microbiome properties in the root nodules of Prosopis cineraria, a leguminous desert tree. Microbiol Spectr 2024; 12:e0361723. [PMID: 38624222 PMCID: PMC11237379 DOI: 10.1128/spectrum.03617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.
Collapse
Affiliation(s)
- Rashid Ali
- Mitrix Bio., Inc., Farmington, Connecticut, USA
| | | | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | | | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Mariam Al-Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Shina Sasi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Eric Antepenko
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
2
|
Lagunas B, Richards L, Sergaki C, Burgess J, Pardal AJ, Hussain RMF, Richmond BL, Baxter L, Roy P, Pakidi A, Stovold G, Vázquez S, Ott S, Schäfer P, Gifford ML. Rhizobial nitrogen fixation efficiency shapes endosphere bacterial communities and Medicago truncatula host growth. MICROBIOME 2023; 11:146. [PMID: 37394496 DOI: 10.1186/s40168-023-01592-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Despite the knowledge that the soil-plant-microbiome nexus is shaped by interactions amongst its members, very little is known about how individual symbioses regulate this shaping. Even less is known about how the agriculturally important symbiosis of nitrogen-fixing rhizobia with legumes is impacted according to soil type, yet this knowledge is crucial if we are to harness or improve it. We asked how the plant, soil and microbiome are modulated by symbiosis between the model legume Medicago truncatula and different strains of Sinorhizobium meliloti or Sinorhizobium medicae whose nitrogen-fixing efficiency varies, in three distinct soil types that differ in nutrient fertility, to examine the role of the soil environment upon the plant-microbe interaction during nodulation. RESULTS The outcome of symbiosis results in installment of a potentially beneficial microbiome that leads to increased nutrient uptake that is not simply proportional to soil nutrient abundance. A number of soil edaphic factors including Zn and Mo, and not just the classical N/P/K nutrients, group with microbial community changes, and alterations in the microbiome can be seen across different soil fertility types. Root endosphere emerged as the plant microhabitat more affected by this rhizobial efficiency-driven community reshaping, manifested by the accumulation of members of the phylum Actinobacteria. The plant in turn plays an active role in regulating its root community, including sanctioning low nitrogen efficiency rhizobial strains, leading to nodule senescence in particular plant-soil-rhizobia strain combinations. CONCLUSIONS The microbiome-soil-rhizobial dynamic strongly influences plant nutrient uptake and growth, with the endosphere and rhizosphere shaped differentially according to plant-rhizobial interactions with strains that vary in nitrogen-fixing efficiency levels. These results open up the possibility to select inoculation partners best suited for plant, soil type and microbial community. Video Abstract.
Collapse
Affiliation(s)
- Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Luke Richards
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jamie Burgess
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Rana M F Hussain
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Laura Baxter
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Proyash Roy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Anastasia Pakidi
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gina Stovold
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Saúl Vázquez
- University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Sascha Ott
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present Address: Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, 35392, Germany.
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
3
|
Comparative Genomics across Three Ensifer Species Using a New Complete Genome Sequence of the Medicago Symbiont Sinorhizobium ( Ensifer) meliloti WSM1022. Microorganisms 2021; 9:microorganisms9122428. [PMID: 34946030 PMCID: PMC8706082 DOI: 10.3390/microorganisms9122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.
Collapse
|
4
|
Putra R, Vandegeer RK, Karan S, Powell JR, Hartley SE, Johnson SN. Silicon enrichment alters functional traits in legumes depending on plant genotype and symbiosis with nitrogen‐fixing bacteria. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rocky Putra
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Rebecca K. Vandegeer
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Shawan Karan
- Technical Support Services and Mass Spectrometry Facility Western Sydney University Campbelltown NSW Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Susan E. Hartley
- Department of Biology York Environmental Sustainability Institute University of York York UK
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| |
Collapse
|
5
|
Boyle JA, Simonsen AK, Frederickson ME, Stinchcombe JR. Priority effects alter interaction outcomes in a legume-rhizobium mutualism. Proc Biol Sci 2021; 288:20202753. [PMID: 33715440 PMCID: PMC7944086 DOI: 10.1098/rspb.2020.2753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Priority effects occur when the order of species arrival affects the final community structure. Mutualists often interact with multiple partners in different orders, but if or how priority effects alter interaction outcomes is an open question. In the field, we paired the legume Medicago lupulina with two nodulating strains of Ensifer bacteria that vary in nitrogen-fixing ability. We inoculated plants with strains in different orders and measured interaction outcomes. The first strain to arrive primarily determined plant performance and final relative abundances of rhizobia on roots. Plants that received effective microbes first and ineffective microbes second grew larger than plants inoculated with the same microbes in the opposite order. Our results show that mutualism outcomes can be influenced not just by partner identity, but by the interaction order. Furthermore, hosts receiving high-quality mutualists early can better tolerate low-quality symbionts later, indicating that priority effects may help explain the persistence of ineffective symbionts.
Collapse
Affiliation(s)
- Julia A Boyle
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S3B2
| | - Anna K Simonsen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S3B2
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S3B2.,Koffler Scientific Reserve, University of Toronto, Toronto, Ontario, Canada M5S3B2
| |
Collapse
|
6
|
Putra R, Powell JR, Hartley SE, Johnson SN. Is it time to include legumes in plant silicon research? Funct Ecol 2020. [DOI: 10.1111/1365-2435.13565] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rocky Putra
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Susan E. Hartley
- York Environmental Sustainability Institute, Department of Biology University of York York UK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
7
|
Dhanushkodi R, Matthew C, McManus MT, Dijkwel PP. Drought-induced senescence of Medicago truncatula nodules involves serpin and ferritin to control proteolytic activity and iron levels. THE NEW PHYTOLOGIST 2018; 220:196-208. [PMID: 29974467 DOI: 10.1111/nph.15298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/20/2018] [Indexed: 05/09/2023]
Abstract
Drought is a major constraint for legume growth and yield. Senescence of nitrogen-fixing nodules is one of the early drought responses and may cause nutrient stress in addition to water stress in legumes. For nodule senescence to function as part of a drought-survival strategy, we propose that the intrinsically destructive senescence process must be tightly regulated. Medicago truncatula protease inhibitor and iron scavenger-encoding genes, possibly involved in controlling nodule senescence, were identified. RNA interference (RNAi) lines were constructed in which expression of a serpin or ferritins was knocked down. Both wild-type and RNAi lines were subjected to drought stress and nodule activity and plant physiological responses were measured. Drought caused M. truncatula to initiate nodule senescence before plant growth was affected and before an increase in papain-like proteolytic activity and free iron levels was apparent. Knock-down expression of serpin6 and ferritins caused increased protease activity, free iron levels, early nodule senescence and reduced plant growth. The results suggest that M. truncatula nodule-expressed serpin6 and ferritins mediate ordered drought-induced senescence by regulating papain-like cysteine protease activity and free iron levels. This strategy may allow the drought-stressed plants to benefit maximally from residual nitrogen fixation and nutrient recovery resulting from break down of macromolecules.
Collapse
Affiliation(s)
- Ramadoss Dhanushkodi
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Cory Matthew
- Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
8
|
Li Y, Liu P, Takano T, Liu S. A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO₃ Tolerance by Decreasing H₂O₂ Accumulation. Int J Mol Sci 2016; 17:ijms17060804. [PMID: 27248998 PMCID: PMC4926338 DOI: 10.3390/ijms17060804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022] Open
Abstract
Rubredoxin is one of the simplest iron–sulfur (Fe–S) proteins. It is found primarily in strict anaerobic bacteria and acts as a mediator of electron transfer participation in different biochemical reactions. The PutRUB gene encoding a chloroplast-localized rubredoxin family protein was screened from a yeast full-length cDNA library of Puccinellia tenuiflora under NaCl and NaHCO3 stress. We found that PutRUB expression was induced by abiotic stresses such as NaCl, NaHCO3, CuCl2 and H2O2. These findings suggested that PutRUB might be involved in plant responses to adversity. In order to study the function of this gene, we analyzed the phenotypic and physiological characteristics of PutRUB transgenic plants treated with NaCl and NaHCO3. The results showed that PutRUB overexpression inhibited H2O2 accumulation, and enhanced transgenic plant adaptability to NaCl and NaHCO3 stresses. This indicated PutRUB might be involved in maintaining normal electron transfer to reduce reactive oxygen species (ROS) accumulation.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Panpan Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| |
Collapse
|
9
|
Garau G, Terpolilli J, Hill Y, Tian R, Howieson J, Bräu L, Goodwin L, Han J, Reddy T, Huntemann M, Pati A, Woyke T, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of Ensifer medicae Di28; an effective N2-fixing microsymbiont of Medicago murex and M. polymorpha. Stand Genomic Sci 2014; 9:4. [PMID: 25780497 PMCID: PMC4334989 DOI: 10.1186/1944-3277-9-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Ensifer medicae Di28 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago spp. Di28 was isolated in 1998 from a nodule recovered from the roots of M. polymorpha growing in the south east of Sardinia (Italy). Di28 is an effective microsymbiont of the annual forage legumes M. polymorpha and M. murex and is capable of establishing a partially effective symbiotic association with the perennial M. sativa. Here we describe the features of E. medicae Di28, together with genome sequence information and its annotation. The 6,553,624 bp standard draft genome is arranged into 104 scaffolds of 104 contigs containing 6,394 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Giovanni Garau
- Dipartimento di Agraria, S.T.A.A., University of Sassari, Sassari, Italy
| | - Jason Terpolilli
- Centre for Rhizobium Studies, Murdoch University, Murdoch, WA, Australia
| | - Yvette Hill
- Centre for Rhizobium Studies, Murdoch University, Murdoch, WA, Australia
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Murdoch, WA, Australia
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, Murdoch, WA, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Tbk Reddy
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Amrita Pati
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Konstantinos Mavromatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Ivanova
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | - Nikos Kyrpides
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA ; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
10
|
Terpolilli J, Garau G, Hill Y, Tian R, Howieson J, Bräu L, Goodwin L, Han J, Liolios K, Huntemann M, Pati A, Woyke T, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of Ensifer medicae strain WSM1369; an effective microsymbiont of the annual legume Medicago sphaerocarpos. Stand Genomic Sci 2013; 9:420-30. [PMID: 24976897 PMCID: PMC4062641 DOI: 10.4056/sigs.4838624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ensifer medicae WSM1369 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1369 was isolated in 1993 from a nodule recovered from the roots of Medicago sphaerocarpos growing at San Pietro di Rudas, near Aggius in Sardinia (Italy). WSM1369 is an effective microsymbiont of the annual forage legumes M. polymorpha and M. sphaerocarpos. Here we describe the features of E. medicae WSM1369, together with genome sequence information and its annotation. The 6,402,557 bp standard draft genome is arranged into 307 scaffolds of 307 contigs containing 6,656 protein-coding genes and 79 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Jason Terpolilli
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Giovanni Garau
- Dipartimento di Agraria, S.T.A.A., University of Sassari, Italy
| | - Yvette Hill
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Konstantinos Mavromatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| |
Collapse
|