1
|
Golnari M, Bahrami N, Milanian Z, Rabbani Khorasgani M, Asadollahi MA, Shafiei R, Fatemi SSA. Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Sci Rep 2024; 14:1457. [PMID: 38228716 PMCID: PMC10791968 DOI: 10.1038/s41598-024-51823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Despite the current use of some Bacillus spp. as probiotics, looking for and introducing new efficient and safe potential probiotic strains is one of the most important topics in both microbiology and food industry. This study aimed to isolate, identify, and evaluate the probiotic characteristics and safety of some Bacillus spp. from natural sources. Thirty-six spore-forming, Gram-positive, and catalase-positive Bacillus isolates were identified in 54 samples of soil, feces and dairy products. Bacterial identification was performed using 16S rDNA sequencing. To evaluate the probiotic potential of isolates, the resistance of bacterial cells to simulated gastrointestinal tract (GIT) conditions, the presence of enterotoxin genes, their susceptibility to antibiotics, antimicrobial and hemolytic activities and biochemical profiles were investigated. The results revealed that eight sporulating Bacillus spp. isolates fulfilled all tested probiotic criteria. They showed a high growth rate, non-hemolytic and lecithinase activity, and resistance to simulated GIT conditions. These strains exhibited broad-spectrum antibacterial activity against pathogenic bacteria. In addition, they did not exhibit antibacterial resistance to the 12 tested antibiotics. The results of this study suggest that these isolates can be considered as candidates for functional foods and as safe additives to improve diet quality.
Collapse
Affiliation(s)
- Mohsen Golnari
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Bahrami
- Department of Microbiology, NourDanesh Institute of Higher Education, Meymeh, Iran
| | - Zahra Milanian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Rasoul Shafiei
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Safa-Ali Fatemi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Xiang H, He Y, Wang X, Wang J, Li T, Zhu S, Zhang Z, Xu X, Wu Z. Identification and characterization of siderophilic biocontrol strain SL-44 combined with whole genome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62104-62120. [PMID: 36940032 DOI: 10.1007/s11356-023-26272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023]
Abstract
Using rhizobacteria as biological fertilizer is gradually expanding in agriculture as excellent substitutes for chemical fertilizers. Bacillus subtilis SL-44 is a plant growth-promoting rhizobacteria screened from the severely salinized cotton rhizosphere soil in Xinjiang. Study showed that indole-3-acetic acid, organic acid production, nitrogen fixation, and other beneficial secondary metabolite secretion can be synthesized by stain SL-44. At the same time, fencyclin, lipopeptide, chitinase, and other antifungal substances were also detected from the secretion of Bacillus subtilis SL-44, which can effectively control plant diseases. Siderophore separated from SL-44 was verified by HPLC, and results showed it was likely bacillibactin. This study also verified that SL-44 has high antifungal activity against Rhizoctonia solani through in vitro antifungal experiments. The B. subtilis SL-44 whole genome was sequenced and annotated to further explore the biotechnological potential of SL-44. And a large number of genes involved in the synthesis of anti-oxidative stress, antibiotic, and toxins were found. Genome-wide analysis provides clear evidence to support the great potential of B. subtilis SL-44 strain to produce multiple bioantagonistic natural products and growth-promoting metabolites, which may facilitate further research into effective therapies for harmful diseases.
Collapse
Affiliation(s)
- Huichun Xiang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaobo Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Jianwen Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Shuangxi Zhu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Ziyan Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| |
Collapse
|
3
|
Sam-on MFS, Mustafa S, Hashim AM, Yusof MT, Zulkifly S, Roslan MAH. Determination of prebiotic utilisation capability of potential probiotic Bacillus velezensis FS26 through in silico and in vitro approaches. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
4
|
Draft Genome Sequence of an Endophytic Biocontrol Bacterium, Bacillus velezensis PG12, Isolated from Apple Fruit. Microbiol Resour Announc 2019; 8:8/41/e00468-19. [PMID: 31601654 PMCID: PMC6787311 DOI: 10.1128/mra.00468-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacillus velezensis PG12 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant-pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here, we report the draft genome sequence of B. velezensis PG12, which contains 22 scaffolds (3,990,845 bp), 3,884 coding sequences (CDSs), and an average G+C content of 46.45%. Bacillus velezensis PG12 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant-pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here, we report the draft genome sequence of B. velezensis PG12, which contains 22 scaffolds (3,990,845 bp), 3,884 coding sequences (CDSs), and an average G+C content of 46.45%.
Collapse
|
5
|
Martínez-Raudales I, De La Cruz-Rodríguez Y, Alvarado-Gutiérrez A, Vega-Arreguín J, Fraire-Mayorga A, Alvarado-Rodríguez M, Balderas-Hernández V, Fraire-Velázquez S. Draft genome sequence of Bacillus velezensis 2A-2B strain: a rhizospheric inhabitant of Sporobolus airoides (Torr.) Torr ., with antifungal activity against root rot causing phytopathogens. Stand Genomic Sci 2017; 12:73. [PMID: 29225729 PMCID: PMC5717847 DOI: 10.1186/s40793-017-0289-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
A Bacillus velezensis strain from the rhizosphere of Sporobolus airoides (Torr.) Torr., a grass in central-north México, was isolated during a biocontrol of phytopathogens scrutiny study. The 2A-2B strain exhibited at least 60% of growth inhibition of virulent isolates of phytopathogens causing root rot. These phytopathogens include Phytophthora capsici, Fusarium solani, Fusarium oxysporum and Rhizoctonia solani. Furthermore, the 2A-2B strain is an indolacetic acid producer, and a plant inducer of PR1, which is an induced systemic resistance related gene in chili pepper plantlets. Whole genome sequencing was performed to generate a draft genome assembly of 3.953 MB with 46.36% of GC content, and a N50 of 294,737. The genome contains 3713 protein coding genes and 89 RNA genes. Moreover, comparative genome analysis revealed that the 2A-2B strain had the greatest identity (98.4%) with Bacillus velezensis.
Collapse
Affiliation(s)
- Inés Martínez-Raudales
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Yumiko De La Cruz-Rodríguez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Alejandro Alvarado-Gutiérrez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | | | - Ahuitz Fraire-Mayorga
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Miguel Alvarado-Rodríguez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Victor Balderas-Hernández
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Saúl Fraire-Velázquez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| |
Collapse
|
6
|
The Whole-Genome Sequence of Bacillus velezensis Strain SB1216 Isolated from the Great Salt Plains of Oklahoma Reveals the Presence of a Novel Extracellular RNase with Antitumor Activity. GENOME ANNOUNCEMENTS 2017; 5:5/47/e01343-17. [PMID: 29167261 PMCID: PMC5701486 DOI: 10.1128/genomea.01343-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The whole-genome sequence of Bacillus velezensis strain SB1216, isolated from the Great Salt Plains of Oklahoma, showed the presence of a 3,814,720-bp circular chromosome and no plasmids. The presence of a novel 870-bp extracellular RNase gene is predicted to be responsible for this strain's antitumor activity.
Collapse
|
7
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Klein G, Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguilera-Gómez M, Barizzone F, Brozzi R, Correia S, Heng L, Istace F, Lythgo C, Fernández Escámez PS. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J 2017; 15:e04664. [PMID: 32625421 PMCID: PMC7010101 DOI: 10.2903/j.efsa.2017.4664] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
EFSA is requested to assess the safety of a broad range of biological agents in the context of notification for market authorisation as sources of food and feed additives, food enzymes and plant protection products. The qualified presumption of safety (QPS) assessment was developed to provide a harmonised generic pre-assessment to support safety risk assessments performed by EFSA's scientific Panels. The safety of unambiguously defined biological agents (at the highest taxonomic unit appropriate for the purpose for which an application is intended), and the completeness of the body of knowledge are assessed. Identified safety concerns for a taxonomic unit are, where possible and reasonable in number, reflected as 'qualifications' in connection with a recommendation for a QPS status. The list of QPS recommended biological agents was reviewed and updated in the current opinion and therefore becomes the valid list. The 2016 update reviews previously assessed microorganisms including bacteria, yeasts and viruses used for plant protection purposes following an Extensive Literature Search strategy. The taxonomic units related to the new notifications received since the 2013 QPS opinion, were periodically evaluated for a QPS status and the results published as Statements of the BIOHAZ Panel. Carnobacterium divergens, Lactobacillus diolivorans, Microbacterium imperiale, Pasteuria nishizawae, Pediococcus parvulus, Bacillus flexus, Bacillus smithii, Xanthomonas campestris and Candida cylindracea were recommended for the QPS list. All taxonomic units previously recommended for the 2013 QPS list had their status reconfirmed as well their qualifications with the exception of Pasteuria nishizawae for which the qualification was removed. The exclusion of filamentous fungi and enterococci from the QPS evaluations was reconsidered but monitoring will be maintained and the status will be re-evaluated in the next QPS Opinion update. Evaluation of bacteriophages should remain as a case-by-case procedure and should not be considered for QPS status.
Collapse
|
8
|
Zhang N, Yang D, Kendall JRA, Borriss R, Druzhinina IS, Kubicek CP, Shen Q, Zhang R. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats. Front Microbiol 2016; 7:2039. [PMID: 28066362 PMCID: PMC5169363 DOI: 10.3389/fmicb.2016.02039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens-B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Dongqing Yang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Joshua R. A. Kendall
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
- Department of Science and Technology, Evangel UniversitySpringfield, IL, USA
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt- Universität zu BerlinGermany
| | - Irina S. Druzhinina
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Christian P. Kubicek
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Qirong Shen
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Ruifu Zhang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
9
|
Chen JN, Wei CW, Liu HC, Chen SY, Chen C, Juang YM, Lai CC, Yiang GT. Extracts containing CLPs of Bacillus amyloliquefaciens JN68 isolated from chicken intestines exert antimicrobial effects, particularly on methicillin-resistant Staphylococcus aureus and Listeria monocytogenes. Mol Med Rep 2016; 14:5155-5163. [PMID: 27840979 PMCID: PMC5355721 DOI: 10.3892/mmr.2016.5900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
Bacillus amyloliquefaciens JN68, which has been discussed with regards to its antimicrobial activities, was successfully isolated from healthy chicken intestines in the present study. Using the spot-on-the-lawn antagonism method, the preliminary study indicated that a suspension culture of the B. amyloliquefaciens JN68 strain can inhibit the growth of Aspergillus niger and Penicillium pinophilum. Furthermore, the cyclic lipopeptides (CLPs) produced by the B. amyloliquefaciens JN68 strain were further purified through acid precipitation and Bond Elut®C18 chromatography, and their structures were identified using the liquid chromatography‑electrospray ionization‑mass spectrometry (MS)/MS method. Purified CLPs exerted broad spectrum antimicrobial activities on various pathogenic and foodborne bacteria and fungi, as determined using the agar well diffusion method. Listeria monocytogenes can induce listeriosis, which is associated with a high mortality rate. Methicillin‑resistant Staphylococcus aureus (MRSA) is a major pathogenic bacteria that causes nosocomial infections. Therefore, L. monocytogenes and MRSA are currently of great concern. The present study aimed to determine whether B. amyloliquefaciens JN68 extracts could inhibit L. monocytogenes and MRSA. The results indicated that extracts of B. amyloliquefaciens JN68 have CLP components, and can successfully inhibit the growth of L. monocytogenes and MRSA.
Collapse
Affiliation(s)
- Jen-Ni Chen
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Shu-Ying Chen
- Department of Nursing, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chinshuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Yu-Min Juang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| |
Collapse
|
10
|
Zhang S, Jiang W, Li J, Meng L, Cao X, Hu J, Liu Y, Chen J, Sha C. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium. Stand Genomic Sci 2016; 11:73. [PMID: 27688836 PMCID: PMC5031281 DOI: 10.1186/s40793-016-0182-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022] Open
Abstract
Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains.
Collapse
Affiliation(s)
- Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Wei Jiang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Jing Li
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Xu Cao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Jihua Hu
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Yushuai Liu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Jingyu Chen
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Changqing Sha
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
- Heilongjiang Academy of Sciences, Harbin, 150001 China
| |
Collapse
|
11
|
Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 2015; 5:10146. [PMID: 25970693 PMCID: PMC4650812 DOI: 10.1038/srep10146] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/31/2015] [Indexed: 11/08/2022] Open
Abstract
A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.
Collapse
|
12
|
Dunlap CA, Kim SJ, Kwon SW, Rooney AP. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. Int J Syst Evol Microbiol 2015; 65:2104-2109. [PMID: 25835027 DOI: 10.1099/ijs.0.000226] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rhizosphere-isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of commercial interest. Here, we present the draft genome sequence of B. methylotrophicus KACC 13105(T) ( = CBMB205(T)). Comparative genomic analysis showed only minor differences between this strain and the genome of the B. amyloliquefaciens subsp. plantarum type strain, with the genomes sharing approximately 95% of the same genes. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the type strains of these two taxa are highly similar. In fact, our results show that the type strain of B. amyloliquefaciens subsp. plantarum FZB42(T) ( = DSM 23117(T) = BGSC 10A6(T)) does not cluster with other members of the B. amyloliquefaciens taxon. Instead, it clusters well within a clade of strains that are assigned to B. methylotrophicus, including the type strain of that species. Therefore, we propose that the subspecies B. amyloliquefaciens subsp. plantarum should be reclassified as a later heterotypic synonym of B. methylotrophicus.
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Units, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Soo-Jin Kim
- Crop Bioprotection Research Units, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Soon-Wo Kwon
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Alejandro P Rooney
- Crop Bioprotection Research Units, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
13
|
Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays. Antonie van Leeuwenhoek 2014; 106:1247-57. [DOI: 10.1007/s10482-014-0295-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023]
|