1
|
Degif KA, Gebrehiwot M, Tadege G, Demoze L, Yitageasu G. Spatial and temporal variation of pneumonia incidence among under-five children in central gondar zone, Northwest Ethiopia, 2013- 2022. BMC Pediatr 2025; 25:182. [PMID: 40069711 PMCID: PMC11895133 DOI: 10.1186/s12887-025-05550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
Pneumonia is one of the major causes of morbidity and mortality among under-five years old children's worldwide, with Ethiopia having the highest rates among Sub-Saharan African nations. Effective control and preventative measures will be made clear by comprehending the spatial, temporal, and spatiotemporal variation of pneumonia incidence among under-five children. A time series cross-sectional study design was conducted from 1 January 2013 to 31 December 2022 using pneumonia reports obtained from the Central Gondar Zone health department and Gondar administrative health department. Fifteen districts and one administrative city were included and geocoded in the study.Spatial, temporal, and space-time scan spatial statistics were employed to identify clusters of pneumonia incidence among under-five children and were performed by using Excel and the SaTScan program, and the map was plotted using ArcGIS. Pneumonia incidence among under-five children reveals a general trend of rise and seasonal variation in the study area. During this study period, 147,294 under-five cases of pneumonia were reported and males made up most cases accounting for 54.94%. The average cumulative incidence proportion was 9.1. Purely high-rate spatial clusters were detected in Dembiya, Chilga, Wogera, and Gondar Zuria between 2013 and 2018. Gondar City, Wogera, and Gondar Zuria were high-rate spatial clusters detected between 2019 and 2022. The purely temporal cluster was observed from 2017 to 2018 and 2021 to 2022. Spatiotemporal clusters were detected in Dembia, Chilga, Gondar Zuria, and Wogera from 2013 - 2018 and in Gondar City, Wogera, and Gondar Zuria from 2019 - 2022. During this period pneumonia showed seasonal variation with two major peak months namely in April and October. Under five children pneumonia was found to have spatial, temporal, spatiotemporal clustering, and seasonal patterns. Also, the incidence increased over time. Interventional and preventive strategies should be developed and given priority to the areas that have been detected as hot spots in this study to reduce the mortality and morbidity of under 5 children caused by pneumonia.
Collapse
Affiliation(s)
- Kidist Asrat Degif
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Mulat Gebrehiwot
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Garedew Tadege
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Lidetu Demoze
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gelila Yitageasu
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
4
|
Hu Y, Wang M, Xie J, Jiao L, Ding Y, Luo Y. Exposure to ephedrine attenuates Th1/Th2 imbalance underlying OVA-induced asthma through airway epithelial cell-derived exosomal lnc-TRPM2-AS. Chin J Nat Med 2024; 22:530-540. [PMID: 38906600 DOI: 10.1016/s1875-5364(24)60554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 06/23/2024]
Abstract
Although various anti-inflammatory medications, such as ephedrine, are employed to manage cough-variant asthma, their underlying mechanisms are yet to be fully understood. Recent studies suggest that exosomes derived from airway epithelial cells (AECs) contain components like messenger RNAs (mRNAs), micro-RNAs (miRNAs), and long noncoding RNA (lncRNA), which play roles in the occurrence and progression of airway inflammation. This study investigates the influence of AEC-derived exosomes on the efficacy of ephedrine in treating cough-variant asthma. We established a mouse model of asthma and measured airway resistance and serum inflammatory cell levels. Real-time polymerase chain reaction (RT-qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) analyses were used to assess gene and protein expression levels. Exosomes were isolated and characterized. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted to examine the interaction between hnRNPA2B1 and lnc-TRPM2-AS1. In the ovalbumin (OVA)-challenged mouse model, ephedrine treatment reduced inflammatory responses, airway resistance, and Th1/Th2 cell imbalance. Exosomes from OVA-treated AECs showed elevated levels of lnc-TRPM2-AS1, which were diminished following ephedrine treatment. The exosomal lnc-TRPM2-AS1 mediated the Th1/Th2 imbalance in CD4+ T cells, with its packaging into exosomes being facilitated by hnRNPA2B1. This study unveils a novel mechanism by which ephedrine ameliorates OVA-induced CD4+ T cell imbalance by suppressing AEC-derived exosomal lnc-TRPM2-AS1. These findings could provide a theoretical framework for using ephedrine in asthma treatment.
Collapse
Affiliation(s)
- Yan Hu
- Department of Pediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Mengqing Wang
- Department of Pediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China.
| | - Jing Xie
- Department of Pediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Luojia Jiao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi Ding
- Department of Rehabilitation, Medical College, Changsha Civil Affairs Vocational and Technical College, Changsha 410004, Hunan Province, China
| | - Yinhe Luo
- Teaching and Research Office of Chinese and Western Combination, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Li J, Chen C, Gao L, Wang L, Wang W, Zhang J, Gong Z, Wang J, Guo Y. Analysis of histopathology and changes of major cytokines in the lesions caused by Mycoplasma ovipneumoniae infection. BMC Vet Res 2023; 19:273. [PMID: 38102682 PMCID: PMC10722778 DOI: 10.1186/s12917-023-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Mycoplasma ovipneumoniae (M. ovipneumoniae) is one of the main pathogens of sheep pneumonia, causing a series of clinical symptoms, such as depression, anorexia, hyperthermia, cough, dyspnea, and tract secretions. In recent years, the prevalence of M. ovipneumoniae pneumonia has become increasingly serious in sheep farms in Ningxia, China, leading to the death of sheep, and causing significant economic losses. In this study, the pathological organs infected by M. ovipneumoniae were collected to observe histopathological change, to determine the tissue localization of M. ovipneumoniae, and to analyze the cytokine changes, which lays a basis for the diagnosis and pathogenesis of M. ovipneumoniae disease. RESULTS In this study, M. ovipneumoniae was detected in 97 of 105 samples collected from 13 large-scale sheep farms for nucleic acid by PCR. One representative isolate per farm was isolated from 13 farms. The lesions caused by M. ovipneumoniae were mainly in the trachea, bronchus, and lung, including necrosis of tracheal mucosal epithelial cells, disintegration of some epithelial cells, edema of mucosal lamina propria, with inflammatory cell infiltration, cytoplasmic vacuolization of epithelial cells of bronchial mucosa, massive infiltration of inflammatory cells in the alveolar space of lung, necrosis and hyperplasia of alveolar epithelial cells. Immunohistochemical analysis showed that the proportion of M. ovipneumoniae positive area in the lung was the largest, followed by that in the bronchus and trachea. Compared to healthy animals, diseased animals exhibited up-regulated gene expression levels of IL-1β, IL-6, and NF-κB in the trachea, bronchus, and lungs. In contrast, the expression of IL-10, IL-12, and IFN-γ was primarily limited to the trachea and bronchus. The expression of IL-1β showed differential patterns across different lung regions, with variations observed among lung lobes. Additionally, other cytokines consistently showed significant up-regulation specifically in the bronchus. CONCLUSIONS M. ovipneumoniae is primarily found in the lungs of infected individuals. NF-κB, an essential transcription factor, is involved in the regulation of IL-1β transcription. IL-12 may enhance the cytotoxic function of natural killer cells during M. ovipneumoniae infection. Those findings demonstrate the distinct expression profiles of cytokines in various anatomical sites throughout disease progression, suggesting the potential role of bronchial tissue as a major site of immune response.
Collapse
Affiliation(s)
- Jidong Li
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Can Chen
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Le Gao
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Lingling Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Wei Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jinhua Zhang
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
| | - Zhenxing Gong
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
| |
Collapse
|
6
|
Zhang Y, Lin T, Leung HM, Zhang C, Wilson-Mifsud B, Feldman MB, Puel A, Lanternier F, Couderc LJ, Danion F, Catherinot E, Salvator H, Tcherkian C, Givel C, Xu J, Tearney GJ, Vyas JM, Li H, Hurley BP, Mou H. STAT3 mutation-associated airway epithelial defects in Job syndrome. J Allergy Clin Immunol 2023; 152:538-550. [PMID: 36638921 PMCID: PMC10330947 DOI: 10.1016/j.jaci.2022.12.821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Job syndrome is a disease of autosomal dominant hyper-IgE syndrome (AD-HIES). Patients harboring STAT3 mutation are particularly prone to airway remodeling and airway infections. OBJECTIVES Airway epithelial cells play a central role as the first line of defense against pathogenic infection and express high levels of STAT3. This study thus interrogates how AD-HIES STAT3 mutations impact the physiological functions of airway epithelial cells. METHODS This study created human airway basal cells expressing 4 common AD-HIES STAT3 mutants (R382W, V463del, V637M, and Y657S). In addition, primary airway epithelial cells were isolated from a patient with Job syndrome who was harboring a STAT3-S560del mutation and from mice harboring a STAT3-V463del mutation. Cell proliferation, differentiation, barrier function, bacterial elimination, and innate immune responses to pathogenic infection were quantitatively analyzed. RESULTS STAT3 mutations reduce STAT3 protein phosphorylation, nuclear translocation, transcription activity, and protein stability in airway basal cells. As a consequence, STAT3-mutated airway basal cells give rise to airway epithelial cells with abnormal cellular composition and loss of coordinated mucociliary clearance. Notably, AD-HIES STAT3 airway epithelial cells are defective in bacterial killing and fail to initiate vigorous proinflammatory responses and neutrophil transepithelial migration in response to an experimental model of Pseudomonas aeruginosa infection. CONCLUSIONS AD-HIES STAT3 mutations confer numerous abnormalities to airway epithelial cells in cell differentiation and host innate immunity, emphasizing their involvement in the pathogenesis of lung complications in Job syndrome. Therefore, therapies must address the epithelial defects as well as the previously noted immune cell defects to alleviate chronic infections in patients with Job syndrome.
Collapse
Affiliation(s)
- Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Tian Lin
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, and the Departments of Pediatrics, Harvard Medical School, Boston, Mass; Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minn
| | - Brittany Wilson-Mifsud
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Michael B Feldman
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherché (INSERM) U1163, Paris, France; Departments of Medicine, Harvard Medical School, Boston, Mass
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherché (INSERM) U1163, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY
| | - Fanny Lanternier
- Institut Pasteur, Université Paris Cité, Centre National de Référence des Mycoses Invasives et Antifongiques, Centre National de la Recherche Scientifique, Unite Mixté de Recherche (UMR) 2000, Paris, France; Service de Maladies Infectieuses, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Louis-Jean Couderc
- Respiratory Diseases Department, Foch Hospital, Suresnes, France; Laboratoire Virologie et Immunologie Moléculaires Suresnes, UMR 0892 Paris-Saclay University, Paris, France
| | - Francois Danion
- Department of Infectious Diseases, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, Université de Strasbourg, Strasbourg, France
| | | | - Hélène Salvator
- Respiratory Diseases Department, Foch Hospital, Suresnes, France; Laboratoire Virologie et Immunologie Moléculaires Suresnes, UMR 0892 Paris-Saclay University, Paris, France
| | - Colas Tcherkian
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
| | - Claire Givel
- Respiratory Diseases Department, Foch Hospital, Suresnes, France; Laboratoire Virologie et Immunologie Moléculaires Suresnes, UMR 0892 Paris-Saclay University, Paris, France
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Mich
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, and the Departments of Pediatrics, Harvard Medical School, Boston, Mass; Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Jatin M Vyas
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Mass; Departments of Medicine, Harvard Medical School, Boston, Mass
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minn
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass; Departments of Pediatrics, Harvard Medical School, Boston, Mass; Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
7
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Akt Inhibition Promotes Autophagy and Clearance of Group B Streptococcus from the Alveolar Epithelium. Pathogens 2022; 11:pathogens11101134. [PMID: 36297190 PMCID: PMC9611837 DOI: 10.3390/pathogens11101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Group B Streptococcus (GBS) is a gram-positive bacterium that is harmless for healthy individuals but may provoke invasive disease in young infants and immunocompromised hosts. GBS invades the epithelial barriers to enter the bloodstream, and thus strategies that enhance epithelial cell responses may hamper GBS invasion. In the present study, we sought to investigate whether the inhibition of Akt, a kinase that regulates host inflammatory responses and autophagy via suppression of mTOR, can enhance the response of non-phagocytic alveolar epithelial cells against GBS. Treatment of the alveolar epithelial cell line A549 with the Akt inhibitor MK-2206 resulted in the enhanced production of reactive oxygen species and inflammatory mediators in response to GBS. Additionally, Akt inhibition via MK-2206 resulted in elevated LC3II/I ratios and increased autophagic flux in alveolar epithelial cells. Importantly, the inhibition of Akt promoted GBS clearance both in alveolar epithelial cells in vitro and in lung tissue in vivo in a murine model of GBS pneumonia. The induction of autophagy was essential for GBS clearance in MK-2206 treated cells, as knockdown of ATG5, a critical component of autophagy, abrogated the effect of Akt inhibition on GBS clearance. Our findings highlight the role of Akt kinase inhibition in promoting autophagy and GBS clearance in the alveolar epithelium. The inhibition of Akt may serve as a promising measure to strengthen epithelial barriers and prevent GBS invasion in susceptible hosts.
Collapse
|
9
|
Lamberti YA, Debandi M, Carrica MDC, Hayes JA, Rodriguez ME. Intracellular replication of Inquilinus limosus in bronchial epithelial cells. Microb Pathog 2022; 171:105742. [PMID: 36049652 DOI: 10.1016/j.micpath.2022.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Inquilinus limosus is an emerging multi-resistant opportunistic pathogen documented mainly in cystic fibrosis patients. Infection with I. limosus is accompanied by either an acute respiratory exacerbation or a progressive loss of pulmonary function. This study examined the interaction of Inquilinus limosus with the bronquial human epithelial cell line 16HBE14o-. Almost 100% of the bacteria that attached to the bronquial cells were found internalized and located in acidic LAMP2 positive compartments. According to confocal studies combined with antibiotic protection assays, I. limosus is able to survive and eventually replicate in these compartments. I. limosus was found nontoxic to cells and did not induce neither IL-6 nor IL-8 cytokine production, a characteristic that may help the bacteria to evade host immune response. Overall, this study indicates that I. limosus displays pathogenic properties based on its ability to survive intracellularly in epithelial cells eventually leading to antibiotic failure and chronic infection.
Collapse
Affiliation(s)
- Yanina Andrea Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela Del Carmen Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
10
|
Utilizing the Gastrointestinal Microbiota to Modulate Cattle Health through the Microbiome-Gut-Organ Axes. Microorganisms 2022; 10:microorganisms10071391. [PMID: 35889109 PMCID: PMC9324549 DOI: 10.3390/microorganisms10071391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The microorganisms inhabiting the gastrointestinal tract (GIT) of ruminants have a mutualistic relationship with the host that influences the efficiency and health of the ruminants. The GIT microbiota interacts with the host immune system to influence not only the GIT, but other organs in the body as well. The objective of this review is to highlight the importance of the role the gastrointestinal microbiota plays in modulating the health of a host through communication with different organs in the body through the microbiome-gut-organ axes. Among other things, the GIT microbiota produces metabolites for the host and prevents the colonization of pathogens. In order to prevent dysbiosis of the GIT microbiota, gut microbial therapies can be utilized to re-introduce beneficial bacteria and regain homeostasis within the rumen environment and promote gastrointestinal health. Additionally, controlling GIT dysbiosis can aid the immune system in preventing disfunction in other organ systems in the body through the microbiome-gut-brain axis, the microbiome-gut-lung axis, the microbiome-gut-mammary axis, and the microbiome-gut-reproductive axis.
Collapse
|
11
|
Takano M, Kuriyama S, Kameda N, Kawami M, Yumoto R. Effect of Corticosteroids on Peptide Transporter 2 Function and Induction of Innate Immune Response by Bacterial Peptides in Alveolar Epithelial Cells. Biol Pharm Bull 2022; 45:213-219. [PMID: 35110509 DOI: 10.1248/bpb.b21-00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the lung alveolar region, the innate immune system serves as an important host defense system. We recently reported that peptide transporter 2 (PEPT2) has an essential role in the uptake of bacterial peptides and induction of innate immune response in alveolar epithelial cells. In this study, we aimed to clarify the effects of corticosteroids on PEPT2 function and PEPT2-dependent innate immune response. NCI-H441 (H441) cells were used as an in vitro model of human alveolar type II epithelial cells, and the effects of dexamethasone (DEX) and budesonide (BUD) on the transport function of PEPT2 and the innate immune response induced by bacterial peptides were examined. PEPT2 function, estimated by measuring β-alanyl-Nε-(7-amino-4-methyl-2-oxo-2H-1-benzopyran-3-acetyl)-L-lysine (β-Ala-Lys-AMCA) uptake in H441 cells, was suppressed by treatment with DEX and BUD in a concentration- and time-dependent manner. The suppression of PEPT2 function was partially recovered by a glucocorticoid receptor antagonist. The expression of PEPT2 and nucleotide-binding oligomerization domain 1 (NOD1) mRNAs was suppressed by treatment with DEX and BUD, while PEPT2 protein level was not changed by these treatment conditions. Additionally, the increased mRNA expression of interleukin (IL)-8 and the increased secretion of IL-8 into the culture medium induced by bacterial peptides were also suppressed by treatment with these corticosteroids. Taken together, these results clearly suggest that corticosteroids suppress PEPT2 function and bacterial peptide-induced innate immune response in alveolar epithelial cells. Therefore, PEPT2- and NOD1-dependent innate immune response induced by bacterial peptides in the lung alveolar region may be suppressed during the inhaled corticosteroid therapy.
Collapse
Affiliation(s)
- Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shiori Kuriyama
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Nanako Kameda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
12
|
Dabaghi M, Tiessen N, Cao Q, Chandiramohan A, Saraei N, Kim Y, Gupta T, Selvaganapathy PR, Hirota JA. Adhesive-Based Fabrication Technique for Culture of Lung Airway Epithelial Cells with Applications in Cell Patterning and Microfluidics. ACS Biomater Sci Eng 2021; 7:5301-5314. [PMID: 34696583 DOI: 10.1021/acsbiomaterials.1c01200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work describes a versatile and cost-effective cell culture method for micropatterning and growing adherent cells on porous membranes using pressure-sensitive double-sided adhesives. This technique also allows cell culture using conventional methods and their easy integration into microfluidic chip devices. Adhesives can be used to form different patterns of cultured cells, which can be used for cell proliferation and wound-healing models. To demonstrate the viability of our system, we evaluate the toxicity effect of five different adhesives on two distinct airway epithelial cell lines and show functional applications for cell patterning and microfluidic cell culture chip fabrication. We developed a sandwiched microfluidic device that enabled us to culture cells in a submerged condition and transformed it into a dynamic platform when required. The viability of cells and their inflammatory responses to IL-1β stimulation were investigated. Our technique is applicable for conventional culturing of cells, widely available in biomedical research labs, while enabling the introduction of perfusion for an advanced dynamic cell culture model when needed.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario L8N 4A6, Canada
| | - Nicholas Tiessen
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario L8N 4A6, Canada
| | - Quynh Cao
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario L8N 4A6, Canada
| | - Abiram Chandiramohan
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario L8N 4A6, Canada
| | - Neda Saraei
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario L8N 4A6, Canada
| | - Yechan Kim
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario L8N 4A6, Canada
| | - Tamaghna Gupta
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario L8N 4A6, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Microbicidal Activity of Hypothiocyanite against Pneumococcus. Antibiotics (Basel) 2021; 10:antibiotics10111313. [PMID: 34827251 PMCID: PMC8614991 DOI: 10.3390/antibiotics10111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infections caused by Streptococcus pneumoniae (pneumococcus, Spn) manifest in several forms such as pneumonia, meningitis, sinusitis or otitis media and are associated with severe morbidity and mortality worldwide. While current vaccines and antibiotics are available to treat Spn infections, the rise of antibiotic resistance and limitations of the vaccines to only certain Spn serotypes urge the development of novel treatments against Spn. Hypothiocyanite (OSCN-) is a natural antimicrobial product produced by the body's own innate immune system to fight a variety of pathogens. We recently showed that OSCN- is also capable of killing Spn in vitro. OSCN- is an oxidative agent attacking microbes in a nonspecific manner, is safe for the host and also has anti-inflammatory effects that make it an ideal candidate to treat a variety of infections in humans. However, OSCN- has a short life span that makes its use, dosage and administration more problematic. This minireview discusses the antimicrobial mechanism of action of OSCN- against Spn and elaborates on the potential therapeutic use of OSCN- against Spn and other infectious agents, either alone or in combination with other therapeutic approaches.
Collapse
|
14
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
15
|
Tsay TB, Chang WH, Hsu CM, Chen LW. Mechanical ventilation enhances Acinetobacter baumannii-induced lung injury through JNK pathways. Respir Res 2021; 22:159. [PMID: 34022899 PMCID: PMC8140754 DOI: 10.1186/s12931-021-01739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients in intensive care units (ICUs) often received broad-spectrum antibiotic treatment and Acinetobacter baumannii (A.b.) and Pseudomonas aeruginosa (P.a.) were the most common pathogens causing ventilator-associated pneumonia (VAP). This study aimed to examine the effects and mechanism of mechanical ventilation (MV) on A.b.-induced lung injury and the involvement of alveolar macrophages (AMs). METHODS C57BL/6 wild-type (WT) and c-Jun N-terminal kinase knockout (JNK1-/-) mice received MV for 3 h at 2 days after nasal instillation of A.b., P.a. (1 × 106 colony-forming unit, CFU), or normal saline. RESULTS Intranasal instillation of 106 CFU A.b. in C57BL/6 mice induced a significant increase in total cells and protein levels in the bronchoalveolar lavage fluid (BALF) and neutrophil infiltration in the lungs. MV after A.b. instillation increases neutrophil infiltration, interleukin (IL)-6 and vascular cell adhesion molecule (VCAM) mRNA expression in the lungs and total cells, IL-6 levels, and nitrite levels in the BALF. The killing activity of AMs against A.b. was lower than against P.a. The diminished killing activity was parallel with decreased tumor necrosis factor-α production by AMs compared with A.b. Inducible nitric oxide synthase inhibitor, S-methylisothiourea, decreased the total cell number in BALF on mice receiving A.b. instillation and ventilation. Moreover, MV decreased the A.b. and P.a. killing activity of AMs. MV after A.b. instillation induced less total cells in the BALF and nitrite production in the serum of JNK1-/- mice than those of WT mice. CONCLUSION A.b. is potent in inducing neutrophil infiltration in the lungs and total protein in the BALF. MV enhances A.b.-induced lung injury through an increase in the expression of VCAM and IL-6 levels in the BALF and a decrease in the bacteria-killing activity of AMs. A lower inflammation level in JNK1-/- mice indicates that A.b.-induced VAP causes lung injury through JNK signaling pathway in the lungs.
Collapse
MESH Headings
- Acinetobacter Infections/enzymology
- Acinetobacter Infections/microbiology
- Acinetobacter Infections/pathology
- Acinetobacter baumannii/pathogenicity
- Animals
- Cells, Cultured
- Disease Models, Animal
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lung/enzymology
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/microbiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8/genetics
- Mitogen-Activated Protein Kinase 8/metabolism
- Neutrophil Infiltration
- Nitric Oxide Synthase Type II/metabolism
- Pneumonia, Ventilator-Associated/enzymology
- Pneumonia, Ventilator-Associated/microbiology
- Pneumonia, Ventilator-Associated/pathology
- Respiration, Artificial/adverse effects
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- Ventilator-Induced Lung Injury/enzymology
- Ventilator-Induced Lung Injury/microbiology
- Ventilator-Induced Lung Injury/pathology
- Mice
Collapse
Affiliation(s)
- Tzyy-Bin Tsay
- Department of Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Surgery, Kaohsiung Veterans General Hospital, 386, Ta-Chung 1st Road, Kaohsiung, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
16
|
Linfield DT, Gao N, Raduka A, Harford TJ, Piedimonte G, Rezaee F. RSV attenuates epithelial cell restitution by inhibiting actin cytoskeleton-dependent cell migration. Am J Physiol Lung Cell Mol Physiol 2021; 321:L189-L203. [PMID: 34010080 DOI: 10.1152/ajplung.00118.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The airway epithelium's ability to repair itself after injury, known as epithelial restitution, is an essential mechanism enabling the respiratory tract's normal functions. Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections worldwide. We sought to determine whether RSV delays the airway epithelium wound repair process both in vitro and in vivo. We found that RSV infection attenuated epithelial cell migration, a step in wound repair, promoted stress fiber formation, and mediated assembly of large focal adhesions (FA). Inhibition of Rho kinase (ROCK), a master regulator of actin function, reversed these effects. There was increased RhoA and phospho-myosin light chain (pMLC2) following RSV infection. In vivo, mice were intraperitoneally inoculated with naphthalene to induce lung injury, followed by RSV infection. RSV infection delayed re-epithelialization. There were increased concentrations of pMLC2 in day 7 naphthalene plus RSV animals which normalized by day 14. This study suggests a key mechanism by which RSV infection delays wound healing.
Collapse
Affiliation(s)
| | - Nannan Gao
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States
| | - Andjela Raduka
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States
| | - Terri J Harford
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States
| | | | - Fariba Rezaee
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States.,Center for Pediatric Pulmonology, Cleveland Clinic Children's, Cleveland, Ohio, United States
| |
Collapse
|
17
|
Lei X, Palomero J, de Rink I, de Wit T, van Baalen M, Xiao Y, Borst J. Flagellin/TLR5 Stimulate Myeloid Progenitors to Enter Lung Tissue and to Locally Differentiate Into Macrophages. Front Immunol 2021; 12:621665. [PMID: 33815375 PMCID: PMC8017192 DOI: 10.3389/fimmu.2021.621665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Toll-like receptor 5 (TLR5) is the receptor of bacterial Flagellin. Reportedly, TLR5 engagement helps to combat infections, especially at mucosal sites, by evoking responses from epithelial cells and immune cells. Here we report that TLR5 is expressed on a previously defined bipotent progenitor of macrophages (MΦs) and osteoclasts (OCs) that resides in the mouse bone marrow (BM) and circulates at low frequency in the blood. In vitro, Flagellin promoted the generation of MΦs, but not OCs from this progenitor. In vivo, MΦ/OC progenitors were recruited from the blood into the lung upon intranasal inoculation of Flagellin, where they rapidly differentiated into MΦs. Recruitment of the MΦ/OC progenitors into the lung was likely promoted by the CCL2/CCR2 axis, since the progenitors expressed CCR2 and type 2 alveolar epithelial cells (AECs) produced CCL2 upon stimulation by Flagellin. Moreover, CCR2 blockade reduced migration of the MΦ/OC progenitors toward lung lavage fluid (LLF) from Flagellin-inoculated mice. Our study points to a novel role of the Flagellin/TLR5 axis in recruiting circulating MΦ/OC progenitors into infected tissue and stimulating these progenitors to locally differentiate into MΦs. The progenitor pathway to produce MΦs may act, next to monocyte recruitment, to fortify host protection against bacterial infection at mucosal sites.
Collapse
Affiliation(s)
- Xin Lei
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Jara Palomero
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Iris de Rink
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tom de Wit
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn van Baalen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yanling Xiao
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Kalininskiy A, Kittel J, Nacca NE, Misra RS, Croft DP, McGraw MD. E-cigarette exposures, respiratory tract infections, and impaired innate immunity: a narrative review. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2021; 4:5. [PMID: 34095814 PMCID: PMC8177080 DOI: 10.21037/pm-20-97] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electronic cigarettes (e-cigarettes) are commonly used devices by adolescents and young adults. Since their introduction, the popularity of e-cigarettes has increased significantly with close to twenty percent of United States high school students reporting current use in 2020. As the number of e-cigarette users has increased, so have reports of vaping related health complications. Overall, respiratory tract infections remain one of the top ten leading causes of death in the US for every age group. Specific to the pediatric population, lower respiratory tract infections are the leading cause for hospitalization. This review highlights the current evidence behind e-cigarette exposure and its association with impaired innate immune function and the risk of lower respiratory tract infections. To date, various preclinical models have evaluated the direct effects of e-cigarette exposure on the innate immune system. More specifically, e-cigarette exposure impairs certain cell types of the innate immune system including the airway epithelium, lung macrophage and neutrophils. Identified effects of e-cigarette exposure common to the lung's innate immunity include abnormal mucus composition, reduced epithelial barrier function, impaired phagocytosis and elevated systemic markers of inflammation. These identified impairments in the lung's innate immunity have been shown to increase adhesion of certain bacteria and fungi as well as to increase virulence of common respiratory pathogens such as influenza virus, Staphylococcus aureus or Streptococcus pneumoniae. Information summarized in this review will provide guidance to healthcare providers, policy advocates and researchers for making informed decisions regarding the associated respiratory health risks of e-cigarette use in pediatric and young adults.
Collapse
Affiliation(s)
- Aleks Kalininskiy
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester NY, USA
| | - Julie Kittel
- Department of Public Health, University of Rochester Medical Center, Rochester NY, USA
| | - Nicholas E. Nacca
- Department of Emergency Medicine, University of Rochester Medical Center, Rochester NY, USA
| | - Ravi S. Misra
- Department of Pediatrics, Pulmonology, University of Rochester Medical Center, Rochester NY, USA
| | - Daniel P. Croft
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester NY, USA
| | - Matthew D. McGraw
- Department of Pediatrics, Pulmonology, University of Rochester Medical Center, Rochester NY, USA
| |
Collapse
|
19
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020; 177:4825-4844. [PMID: 32333398 PMCID: PMC7572451 DOI: 10.1111/bph.15082] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
| | - Paul A. Insel
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
20
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020. [PMID: 32333398 DOI: 10.1111/bph.15082.10.1111/bph.15082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Abstract
Purpose of Review Lung tissues are highly susceptible to airway inflammation as they are inevitably exposed to inhaled pathogens and allergens. In the lungs, clearance of infectious agents and regulation of inflammatory responses are important for the first-line defense, where surfactants play a role in host defense mechanisms. In this review, clinical significance of pulmonary surfactants in asthma has been highlighted. Recent Findings Surfactants, such as surfactant protein A (SP-A) and SP-D released from alveolar epithelium, reduce pathogen infection and control immune-cell activation. Especially, SP-D directly binds to eosinophil surface, leading to inhibition of extracellular trap formation and reduction in airway inflammation. Production of surfactants is commonly determined by both genetic (single nucleotide polymorphisms) and environmental factors influencing processes involved in the development of asthma. In addition, nintedanib (an intracellular inhibitor of tyrosine kinases) could increase SP-D levels and is used in patients with idiopathic pulmonary fibrosis. These findings may provide a possible application of SP-D in asthma. Summary Surfactants are key players contributing to host defense through maintaining the immune system. As clinical implications of surfactants involved in asthma have been suggested, further translational studies are needed to apply surfactants as an effective therapeutic target in patients with asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jaehyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
22
|
Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front Immunol 2020; 11:1722. [PMID: 32849610 PMCID: PMC7417316 DOI: 10.3389/fimmu.2020.01722] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is a primary organ for gas exchange in mammals that represents the largest epithelial surface in direct contact with the external environment. It also serves as a crucial immune organ, which harbors both innate and adaptive immune cells to induce a potent immune response. Due to its direct contact with the outer environment, the lung serves as a primary target organ for many airborne pathogens, toxicants (aerosols), and allergens causing pneumonia, acute respiratory distress syndrome (ARDS), and acute lung injury or inflammation (ALI). The current review describes the immunological mechanisms responsible for bacterial pneumonia and sepsis-induced ALI. It highlights the immunological differences for the severity of bacterial sepsis-induced ALI as compared to the pneumonia-associated ALI. The immune-based differences between the Gram-positive and Gram-negative bacteria-induced pneumonia show different mechanisms to induce ALI. The role of pulmonary epithelial cells (PECs), alveolar macrophages (AMs), innate lymphoid cells (ILCs), and different pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs) and inflammasome proteins) in neutrophil infiltration and ALI induction have been described during pneumonia and sepsis-induced ALI. Also, the resolution of inflammation is frequently observed during ALI associated with pneumonia, whereas sepsis-associated ALI lacks it. Hence, the review mainly describes the different immune mechanisms responsible for pneumonia and sepsis-induced ALI. The differences in immune response depending on the causal pathogen (Gram-positive or Gram-negative bacteria) associated pneumonia or sepsis-induced ALI should be taken in mind specific immune-based therapeutics.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Faculty of Medicine, School of Clinical Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Rossi GA, Fanous H, Colin AA. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr Pulmonol 2020; 55:1061-1073. [PMID: 32084305 DOI: 10.1002/ppul.24699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Acute respiratory infections are amongst the leading causes of childhood morbidity and mortality globally. Viruses are the predominant cause of such infections, but mixed etiologies with bacteria has for decades raised the question of the interplay between them in causality and determination of the outcome of such infections. In this review, we examine recent microbiological, biochemical, and immunological advances that contribute to elucidating the mechanisms by which infections by specific viruses enable bacterial infections in the airway, and exacerbate them. We analyze specific domains in which viruses play such facilitating role including enhancement of bacterial adhesion by unmasking cryptic receptors and upregulation of adhesion proteins, disruption of tight junction integrity favoring paracellular transmigration of bacteria and loss of epithelial barrier integrity, increased availability of nutrient, such as mucins and iron, alteration of innate and adaptive immune responses, and disabling defense against bacteria, and lastly, changes in airway microbiome that render the lung more vulnerable to pathogens. Separate exhaustive analysis of each domain focuses on individuals with cystic fibrosis (CF), in whom viruses may play a key role in paving the way for the primary injury that leads to permanence of bacterial pathogens, viruses may then serve as triggers for "CF exacerbations"; these constituting the signature and ultimately the outcome determinants of these patients.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Pulmonary and Allergy Disease Unit, Department of Pediatrics, G. Gaslini University Hospital, Genoa, Italy
| | - Hani Fanous
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
24
|
Di Cristo L, Grimaldi B, Catelani T, Vázquez E, Pompa PP, Sabella S. Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model. Mater Today Bio 2020; 6:100050. [PMID: 32322818 PMCID: PMC7171197 DOI: 10.1016/j.mtbio.2020.100050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Hazard evaluation of engineered nanomaterials (ENMs) using real-world exposure scenario could provide better interpretation of toxicity end points for their use in the assessment of human safety and for their implications in many fields such as toxicology, nanomedicine, and so forth. However, most of the current studies, both in vivo and in vitro, do not reflect realistic conditions of human exposure to ENMs, due to the high doses implemented. Moreover, the use of cellular models cultured under submerged conditions limits their physiological relevance for lung exposure, where cells are primarily cultured at the air-liquid interface. Addressing such issues is even more challenging for emergent nanomaterials, such as graphene oxide (GO), for which little or no information on exposure is available. In this work, we studied the impact of repeated exposure of GO on a three-dimensional (3D) reconstruct of human bronchial tissue, using a nebulizer system focusing on short-term effects. The selected doses (reaching a maximum of ca. 20 μg/cm2 for a period of 4 weeks of exposure) were extrapolated from alveolar mass deposition values of a broader class of carbon-based nanomaterials, reflecting a full working lifetime of human exposure. Experimental results did not show strong toxic effects of GO in terms of viability and integrity of the lung tissue. However, since 2 weeks of treatment, repeated GO exposure elicited a proinflammatory response, moderate barrier impairment, and autophagosome accumulation, a process resulting from blockade of autophagy flux. Interestingly, the 3D airway model could recover such an effect by restoring autophagy flux at longer exposure (30 days). These findings indicate that prolonged exposure to GO produces a time window (during the 30 days of treatment set for this study) for which GO-mediated autophagy inhibition along with inflammation may potentially increase the susceptibility of exposed humans to pulmonary infections and/or lung diseases. This study also highlights the importance of using physiologically relevant in vitro models and doses derived from real-world exposure to obtain focused data for the assessment of human safety.
Collapse
Affiliation(s)
- L Di Cristo
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16136, Italy
| | - B Grimaldi
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16136, Italy
| | - T Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - E Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - P P Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - S Sabella
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16136, Italy
| |
Collapse
|
25
|
Ganesh PS, Vishnupriya S, Vadivelu J, Mariappan V, Vellasamy KM, Shankar EM. Intracellular survival and innate immune evasion of Burkholderia cepacia: Improved understanding of quorum sensing-controlled virulence factors, biofilm, and inhibitors. Microbiol Immunol 2020; 64:87-98. [PMID: 31769530 DOI: 10.1111/1348-0421.12762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022]
Abstract
Burkholderia cepacia complex (Bcc) are opportunistic pathogens implicated with nosocomial infections, and high rates of morbidity and mortality, especially in individuals with cystic fibrosis (CF). B. cepacia are naturally resistant to different classes of antibiotics, and can subvert the host innate immune responses by producing quorum sensing (QS) controlled virulence factors and biofilms. It still remains a conundrum as to how exactly the bacterium survives the intracellular environment within the host cells of CF patients and immunocompromised individuals although the bacterium can invade human lung epithelial cells, neutrophils, and murine macrophages. The mechanisms associated with intracellular survival in the airway epithelial cells and the role of QS and virulence factors in B. cepacia infections in cystic fibrosis remain largely unclear. The current review focuses on understanding the role of QS-controlled virulence factors and biofilms, and provides additional impetus to understanding the potentials of QS-inhibitory strategies against B. cepacia.
Collapse
Affiliation(s)
- Pitchaipillai Sankar Ganesh
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivakumar Vishnupriya
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha M Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Esaki M Shankar
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
26
|
Molecular characterization of pulmonary defenses against bacterial invasion in allergic asthma: The role of Foxa2 in regulation of β-defensin 1. PLoS One 2019; 14:e0226517. [PMID: 31881038 PMCID: PMC6934329 DOI: 10.1371/journal.pone.0226517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Allergic asthma, characterized by chronic airway Th2-dominated inflammation, is associated with an increased risk of infection; however, the underlying mechanisms are unclear. Forkhead box protein A2 (Foxa2) plays a critical role in Th2 inflammation and is associated with pulmonary defenses. To determining the role of Foxa2 in Th2-dominated lung inflammation against the invading bacteria, we established a mouse OVA-sensitized model, an Escherichia coli lung invasion model, and mice with conditional deletion of Foxa2 in respiratory epithelial cells. The number of bacteria in the lung tissue was counted to assess clearance ability of lung. Lung inflammation and histopathology was evaluated using HE and PAS staining. It was found that OVA-sensitized mice had decreased E. coli clearance, reduced Foxa2 expression, and decreased DEFB1 secretion. Conditional deletion of Foxa2 in respiratory epithelial cells led to decreased clearance of E. coli and impaired secretion of DEFB1, similar to the OVA-induced allergic condition. The impaired secretion of DEFB1 may be responsible for the increased risk of infection in the Th2-dominated airway inflammation. Dual luciferase assay demonstrated that Foxa2 regulates DEFB1 expression by affecting its promoter activity in HBE cells. Our study indicated that Foxa2 plays an important role in Th2-dominated airway inflammation against invading bacteria. Conditional deletion of Foxa2 in respiratory epithelial cells can reduce pulmonary's defense against bacterial invasion by inhibiting DEFB1expression.
Collapse
|
27
|
Vadakkan K, Hemapriya J, Selvaraj V. Quorum quenching intervened in vivo attenuation and immunological clearance enhancement by Solanum torvum root extract against Pseudomonas aeruginosa instigated pneumonia in Sprague Dawley rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Weight CM, Venturini C, Pojar S, Jochems SP, Reiné J, Nikolaou E, Solórzano C, Noursadeghi M, Brown JS, Ferreira DM, Heyderman RS. Microinvasion by Streptococcus pneumoniae induces epithelial innate immunity during colonisation at the human mucosal surface. Nat Commun 2019; 10:3060. [PMID: 31311921 PMCID: PMC6635362 DOI: 10.1038/s41467-019-11005-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Control of Streptococcus pneumoniae colonisation at human mucosal surfaces is critical to reducing the burden of pneumonia and invasive pneumococcal disease, interrupting transmission, and achieving herd protection. Here, we use an experimental human pneumococcal carriage model (EHPC) to show that S. pneumoniae colonisation is associated with epithelial surface adherence, micro-colony formation and invasion, without overt disease. Interactions between different strains and the epithelium shaped the host transcriptomic response in vitro. Using epithelial modules from a human epithelial cell model that recapitulates our in vivo findings, comprising of innate signalling and regulatory pathways, inflammatory mediators, cellular metabolism and stress response genes, we find that inflammation in the EHPC model is most prominent around the time of bacterial clearance. Our results indicate that, rather than being confined to the epithelial surface and the overlying mucus layer, the pneumococcus undergoes micro-invasion of the epithelium that enhances inflammatory and innate immune responses associated with clearance. Streptococcus pneumoniae is a common coloniser of the human nasopharynx, but it also causes severe diseases. Here, Weight et al. use an experimental human pneumococcal carriage model to show that bacterial colonisation is associated with invasion of the epithelium and enhancement of immune responses.
Collapse
Affiliation(s)
- Caroline M Weight
- Division of Infection and Immunity, University College London, London, UK.
| | - Cristina Venturini
- Division of Infection and Immunity, University College London, London, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Jeremy S Brown
- Department of Respiratory Medicine, University College London, London, UK
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
29
|
Takano M, Takeuchi T, Kuriyama S, Yumoto R. Role of peptide transporter 2 and MAPK signaling pathways in the innate immune response induced by bacterial peptides in alveolar epithelial cells. Life Sci 2019; 229:173-179. [DOI: 10.1016/j.lfs.2019.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
|
30
|
Zeineldin M, Lowe J, Aldridge B. Contribution of the Mucosal Microbiota to Bovine Respiratory Health. Trends Microbiol 2019; 27:753-770. [PMID: 31104970 DOI: 10.1016/j.tim.2019.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Recognizing the respiratory tract as a dynamic and complex ecosystem has enhanced our understanding of the pathophysiology of bovine respiratory disease (BRD). There is widespread evidence showing that disease-predisposing factors often disrupt the respiratory microbial ecosystem, provoking atypical colonization patterns and a progressive dysbiosis. The ecological factors that shape the respiratory microbiota, and the influence of these complex communities on bovine respiratory health, are a rich area for research exploration. Here, we review the current status of understanding of the bovine respiratory microbiota, the factors that influence its development and stability, its role in maintaining mucosal homeostasis, and ultimately its contribution to bovine health and disease. Finally, we explore the limitations of current research approaches to the microbiome and discuss potential directions for future research that can help us better understand the role of the respiratory microbiota in the health, welfare, and productivity of livestock.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Medicine, College of Veterinary Medicine, Benha University, Egypt
| | - James Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian Aldridge
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
31
|
Yan Z, Zou W, Feng Z, Shen W, Park SY, Deng X, Qiu J, Engelhardt JF. Establishment of a High-Yield Recombinant Adeno-Associated Virus/Human Bocavirus Vector Production System Independent of Bocavirus Nonstructural Proteins. Hum Gene Ther 2019; 30:556-570. [PMID: 30398383 DOI: 10.1089/hum.2018.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genome of recombinant adeno-associated virus 2 (rAAV2) remains a promising candidate for gene therapy for cystic fibrosis (CF) lung disease, but due to limitations in the packaging capacity and the tropism of this virus with respect to the airways, strategies have evolved for packaging an rAAV2 genome (up to 5.8 kb) into the capsid of human bocavirus 1 (HBoV1) to produce a chimeric rAAV2/HBoV1 vector. Although a replication-incompetent HBoV1 genome has been established as a trans helper for capsid complementation, this system remains suboptimal with respect to virion yield. Here, a streamlined production system is described based on knowledge of the involvement of HBoV1 nonstructural (NS) proteins NS1, NS2, NS3, NS4, and NP1 in the process of virion production. The analyses reveal that NS1 and NS2 negatively impact virion production, NP1 is required to prevent premature termination of transcription of the cap mRNA from the native genome, and silent mutations within the polyadenylation sites of the cap coding sequence can eliminate this requirement for NP1. It is further shown that preventing the expression of all NS proteins significantly increases virion yield. Whereas the expression of capsid proteins VP1, VP2, and VP3 from a codon-optimized cap mRNA was highly efficient, optimal virion assembly, and thus potency, required enhanced VP1 expression, entailing a separate VP1 expression cassette. The final NS protein-free production system uses three-plasmid co-transfection of HEK293 cells, with one trans helper plasmid encoding VP1 and the AAV2 Rep proteins, and another encoding VP2-3 and components from adenovirus. This system yielded >16-fold more virions than the prototypic system, without reducing transduction potency. This increase in virion production is expected to facilitate greatly both research on the biology of rAAV2/HBoV1 and preclinical studies testing the effectiveness of this vector for gene therapy of CF lung disease in large animal models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weiran Shen
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Soo Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Xuefeng Deng
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| |
Collapse
|
32
|
Legionella feeleii: pneumonia or Pontiac fever? Bacterial virulence traits and host immune response. Med Microbiol Immunol 2018; 208:25-32. [PMID: 30386929 DOI: 10.1007/s00430-018-0571-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/27/2018] [Indexed: 12/19/2022]
Abstract
Gram-negative bacterium Legionella is able to proliferate intracellularly in mammalian host cells and amoeba, which became known in 1976 since they caused a large outbreak of pneumonia. It had been reported that different strains of Legionella pneumophila, Legionella micdadei, Legionella longbeachae, and Legionella feeleii caused human respiratory diseases, which were known as Pontiac fever or Legionnaires' disease. However, the differences of the virulence traits among the strains of the single species and the pathogenesis of the two diseases that were due to the bacterial virulence factors had not been well elucidated. L. feeleii is an important pathogenic organism in Legionellae, which attracted attention due to cause an outbreak of Pontiac fever in 1981 in Canada. In published researches, it has been found that L. feeleii serogroup 2 (ATCC 35849, LfLD) possess mono-polar flagellum, and L. feeleii serogroup 1 (ATCC 35072, WRLf) could secrete some exopolysaccharide (EPS) materials to the surrounding. Although the virulence of the L. feeleii strain was evidenced that could be promoted, the EPS might be dispensable for the bacteria that caused Pontiac fever. Based on the current knowledge, we focused on bacterial infection in human and murine host cells, intracellular growth, cytopathogenicity, stimulatory capacity of cytokines secretion, and pathogenic effects of the EPS of L. feeleii in this review.
Collapse
|
33
|
Wang H, He L, Liu B, Feng Y, Zhou H, Zhang Z, Wu Y, Wang J, Gan Y, Yuan T, Wu M, Xie X, Feng Z. Establishment and comparison of air-liquid interface culture systems for primary and immortalized swine tracheal epithelial cells. BMC Cell Biol 2018; 19:10. [PMID: 29954317 PMCID: PMC6025731 DOI: 10.1186/s12860-018-0162-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Background Air-liquid interface (Ali) systems allow the establishment of a culture environment more representative of that in vivo than other culture systems. They are useful for performing mechanistic studies of respiratory epithelial cells as drug permeation barriers and can be used to study the interactions between hosts and respiratory pathogens. However, there have been few studies concerning Ali cultures of primary swine tracheal epithelial cells (STECs) and an immortalized STEC line, and the differences between these two systems remain poorly defined. Results In this study, we established Ali culture systems for primary STECs and for immortalized STEC line, and we systematically compared the differentiation capacities and immunological functions of these systems for the first time. Under Ali culture conditions, immortalized STEC line and primary STECs could survive for at least forty days, formed tight junctions and differentiated into stratified cells. They both possessed complete abilities to produce mucin and inflammatory cytokines and develop cilia. However, in contrast to primary STECs, which had a heterogeneous morphology, Ali-cultured immortalized STEC line appeared to be a homogenous population. The formation of tight junctions in Ali-cultured primary STECs was superior to that in immortalized STEC line. In addition, cilia in Ali-cultured immortalized STEC line were more pronounced, but their duration of expression was shorter than in primary STECs. Conclusions Ali-cultured primary STECs and immortalized STEC line systems possessing complete abilities to undergo ciliary differentiation and inflammatory cytokine production were established for the first time in this study, and several differences in morphology and the formation of tight junctions and cilia were observed between these two systems. These two systems will be important tools for drug screening studies, as well as for detailed analyses of the interactions between hosts and respiratory pathogens.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Lina He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Yanyan Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Yuan Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Meng Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
34
|
Darweesh RS, Sakagami M. In vitro lung epithelial cell transport and anti-interleukin-8 releasing activity of liposomal ciprofloxacin. Eur J Pharm Sci 2018; 115:68-76. [PMID: 29337216 DOI: 10.1016/j.ejps.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/28/2017] [Accepted: 01/08/2018] [Indexed: 01/14/2023]
Abstract
As a promising long-acting inhaled formulation, liposomal ciprofloxacin (Lipo-CPFX) was characterized in the in vitro human lung epithelial Calu-3 cell monolayer system, compared to ciprofloxacin in solution (CPFX). Its modulated absorptive transport and uptake, and sustained inhibitory activity against induced pro-inflammatory interleukin-8 (IL-8) release were examined. The absorptive transport and uptake kinetics for Lipo-CPFX and CPFX were determined at 0.1-50 mg/ml in the Transwell system. The Lipo-CPFX transport was then challenged for mechanistic exploration via cell energy depletion, a reduced temperature, endocytosis and/or lipid fusion inhibition, and addition of excess non-loaded liposomes. The inhibitory activities of Lipo-CPFX and CPFX against lipopolysaccharide (LPS)-induced IL-8 release were assessed in a co-incubation or pre-incubation mode. In the tight Calu-3 cell monolayers, Lipo-CPFX yielded 15-times slower ciprofloxacin flux of absorptive transport and 5-times lower cellular drug uptake than CPFX. Its transport appeared to be transcellular; kinetically linear, proportional to encapsulated ciprofloxacin concentration; and consistent with the cell energy-independent lipid bilayer fusion mechanism. Lipo-CPFX was equipotent to CPFX in the anti-IL-8 releasing activity upon 24 h co-incubation with LPS. Additionally, Lipo-CPFX, but not CPFX, retained the anti-IL-8 releasing activity even 24 h after pre-incubation. In conclusion, Lipo-CPFX enabled slower absorptive lung epithelial cell transport and uptake of ciprofloxacin, apparently via the lipid bilayer fusion mechanism, and the sustained inhibitory activity against LPS-induced IL-8 release, compared to CPFX.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA.; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22,110, Jordan
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA..
| |
Collapse
|
35
|
Uemura Y, Hagiwara K, Kobayashi K. The intratracheal administration of locked nucleic acid containing antisense oligonucleotides induced gene silencing and an immune-stimulatory effect in the murine lung. PLoS One 2017; 12:e0187286. [PMID: 29107995 PMCID: PMC5673232 DOI: 10.1371/journal.pone.0187286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Locked nucleic acid containing antisense oligonucleotides (LNA-ASOs) have the potential to modulate the disease-related gene expression by the RNaseH-dependent degradation of mRNAs. Pulmonary drug delivery has been widely used for the treatment of lung disease. Thus, the inhalation of LNA-ASOs is expected to be an efficient therapy that can be applied to several types of lung disease. Because the lung has a distinct immune system against pathogens, the immune-stimulatory effect of LNA-ASOs should be considered for the development of novel inhaled LNA-ASOs therapies. However, there have been no reports on the relationship between knock-down (KD) and the immune-stimulatory effects of inhaled LNA-ASOs in the lung. In this report, LNA-ASOs targeting Scarb1 (Scarb1-ASOs) or negative control LNA-ASOs targeting ApoB (ApoB-ASOs) were intratracheally administered to mice to investigate the KD of the gene expression and the immune-stimulatory effects in the lung. We confirmed that the intratracheal administration of Scarb1-ASOs exerted a KD effect in the lung without a drug delivery system. On the other hand, both Scarb1-ASOs and ApoB-ASOs induced neutrophilic infiltration in the alveoli and increased the expression levels of G-CSF and CXCL1 in the lung. The dose required for KD was the same as the dose that induced the neutrophilic immune response. In addition, in our in vitro experiments, Scarb1-ASOs did not increase the G-CSF or CXCL1 expression in primary lung cells, even though Scarb1-ASOs exerted a strong KD effect. Hence, we hypothesize that inhaled LNA-ASOs have the potential to exert a KD effect in the lung, but that they may be associated with a risk of immune stimulation. Further studies about the mechanism underlying the immune-stimulatory effect of LNA-ASOs is necessary for the development of novel inhaled LNA-ASO therapies.
Collapse
Affiliation(s)
- Yasunori Uemura
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Shizuoka, Japan
- * E-mail:
| | - Kenji Hagiwara
- Innovative Technology Labs, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Machida, Tokyo, Japan
| | - Katsuya Kobayashi
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Shizuoka, Japan
| |
Collapse
|
36
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
37
|
Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells. Mediators Inflamm 2017; 2017:9891673. [PMID: 28553017 PMCID: PMC5434471 DOI: 10.1155/2017/9891673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.
Collapse
|
38
|
Martínez-Alemán SR, Campos-García L, Palma-Nicolas JP, Hernández-Bello R, González GM, Sánchez-González A. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis. Front Cell Infect Microbiol 2017; 7:104. [PMID: 28428948 PMCID: PMC5382324 DOI: 10.3389/fcimb.2017.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that codes for the CF trans-membrane conductance regulator. These mutations result in abnormal secretions viscous airways of the lungs, favoring pulmonary infection and inflammation in the middle of neutrophil recruitment. Recently it was described that neutrophils can contribute with disease pathology by extruding large amounts of nuclear material through a mechanism of cell death known as Neutrophil Extracellular Traps (NETs) into the airways of patients with CF. Additionally, NETs production can contribute to airway colonization with bacteria, since they are the microorganisms most frequently found in these patients. In this review, we will discuss the implication of individual or mixed bacterial infections that most often colonize the lung of patients with CF, and the NETs role on the disease.
Collapse
Affiliation(s)
- Saira R Martínez-Alemán
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Lizbeth Campos-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - José P Palma-Nicolas
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| | - Alejandro Sánchez-González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo LeónMonterrey, Mexico
| |
Collapse
|
39
|
Yang YW, Jiang YZ, Hsu CM, Chen LW. Pseudomonas aeruginosa Ventilator-Associated Pneumonia Induces Lung Injury through TNF-α/c-Jun NH2-Terminal Kinase Pathways. PLoS One 2017; 12:e0169267. [PMID: 28060857 PMCID: PMC5218563 DOI: 10.1371/journal.pone.0169267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common nosocomial infection among intensive care unit (ICU) patients. Pseudomonas aeruginosa (PA) is the most common multidrug-resistant Gram-negative pathogen and VAP caused by PA carries a high rate of morbidity and mortality. This study examined the molecular mechanism of PA VAP-induced lung injury. C57BL/6 wild-type (WT) mice and JNK1 knockout (JNK1-/-) mice received mechanical ventilation (MV) for 3 h at 2 days after receiving nasal instillation of PA. The WT and JNK1-/- mice also received MV after the induction of lung injury by instillation of supernatants from PA-stimulated alveolar macrophages (AMs). AMs isolated from WT, IκB-kinase (IKK)βΔMye (IKKβ was selectively deleted in macrophages), and JNK1-/- mice were ex vivo stimulated with live PA and supernatants were collected for cytokine assay. Intranasal instillation of 106 PA enhanced MV-induced NF-κB DNA binding activity in the lungs and nitrite levels in BALF. MV after PA instillation significantly increased the expression of ICAM and VCAM in the lungs and TNF-α, IL-1β, and IL-6 levels in bronchoalveolar lavage fluid (BALF) of WT mice, but not in JNK1-/- mice. MV after supernatant instillation induced more total protein concentration in BALF and neutrophil sequestration in the lungs in WT mice than JNK1-/- mice and cytokine assay of supernatants indicated that TNF-α is a critical regulator of PA VAP-induced lung injury. Ex vivo PA stimulation induced TNF-α production by AMs from WT as well as JNK1-/- mice but not IKKβΔMye mice. In summary, PA colonization plays an important role in PA VAP-induced lung injury through the induction of JNK1-mediated inflammation. These results suggest that the pathogenesis mechanism of PA VAP involves production of TNF-α through activation of IKK/NF-κB pathways in AMs and JNK signaling pathway in the lungs.
Collapse
Affiliation(s)
- Ying-Wei Yang
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Zhen Jiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Jouan Y, Si-Tahar M, Guillon A. Immunité de la muqueuse respiratoire : physiologie et implications en réanimation. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-016-1245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Tsay TB, Jiang YZ, Hsu CM, Chen LW. Pseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury. Respir Res 2016; 17:101. [PMID: 27506464 PMCID: PMC4979138 DOI: 10.1186/s12931-016-0417-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/30/2016] [Indexed: 11/23/2022] Open
Abstract
Background Pseudomonas aeruginosa (PA) is the single-most common pathogen of ventilator-associated pneumonia (VAP). Large quantities of PA in the trachea of ventilated patients are associated with an increased risk of death. However, the role of PA colonization in PA VAP-induced lung injury remains elusive. This study examined the effect and mechanism of PA colonization in VAP-induced lung injury. Methods C57BL/6 wild-type (WT) and c-Jun N-terminal kinase knockout (JNK1−/−) mice received mechanical ventilation for 3 h at 2 days after receiving nasal instillation of PA (1 × 106 colony forming unit) or normal saline. Results Intranasal instillation of PA or mechanical ventilation induced the expression of interleukin-6 (IL-6) in the lungs. Phospho-JNK protein expression in the lungs was significantly increased in mice receiving mechanical ventilation after PA instillation as compared with those receiving ventilation alone. Mechanical ventilation after PA instillation significantly increased the expression of tumor necrosis factor-α (TNF-α), IL-1β, and macrophage inflammatory protein-2 (MIP-2) proteins; neutrophil sequestration; and TNF-α, IL-1β, and IL-6 levels in the lungs of WT mice, but not in JNK1−/− mice. Conclusion PA colonization plays an important role in PA VAP-induced lung injury through the induction of JNK1-mediated inflammation. PA-induced VAP causes lung injury through JNK signaling pathway in the lungs. JNK inhibition in ICU patients with higher percentages of PA colonization may reduce VAP-induced lung injury and mortality.
Collapse
Affiliation(s)
- Tzyy-Bin Tsay
- Department of Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung, Taiwan
| | - Yu-Zhen Jiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, 386, Ta-Chung 1st Road, Kaohsiung, Taiwan. .,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
42
|
David J, Bell RE, Clark GC. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells. Front Cell Infect Microbiol 2015; 5:80. [PMID: 26636042 PMCID: PMC4649042 DOI: 10.3389/fcimb.2015.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan David
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| | - Rachel E Bell
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK ; Division of Immunology, Infection and Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London London, UK
| | - Graeme C Clark
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| |
Collapse
|
43
|
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis. Infect Immun 2015; 84:365-74. [PMID: 26553463 DOI: 10.1128/iai.01168-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague.
Collapse
|
44
|
Wang C, Saito M, Tanaka T, Amako K, Yoshida SI. Comparative analysis of virulence traits between a Legionella feeleii strain implicated in Pontiac fever and a strain that caused Legionnaires' disease. Microb Pathog 2015; 89:79-86. [PMID: 26386398 DOI: 10.1016/j.micpath.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
Abstract
Legionella strains of the same species and serogroup are known to cause Legionnaires' disease (a potentially fatal atypical pneumonia) or Pontiac fever (a mild, flu-like disease), but the bacterial factors that define these dramatic differences in pathology have not been elucidated. To gain a better understanding of these factors, we compared the characteristics of Legionella feeleii strains that were isolated from either a sample of freshwater implicated in an outbreak of Pontiac fever (ATCC 35072, serogroup 1, LfPF), or a patient with Legionnaires' disease (ATCC 38549, serogroup 2, LfLD). Growth of LfPF and LfLD in BYE broth was slower than the positive control, Legionella pneumophila strain JR32. However, LfLD grew faster than LfPF at 42 °C. After in vitro infection to J774 murine or U937 human macrophage cell lines and A549 human lung epithelial cell line, LfLD showed a higher cell infection rate, stronger internalization by host cells, and greater cytotoxicity than that of LfPF. Large amounts of IL-6 and IL-8 were secreted by human host cells after infection with LfLD, but not with LfPF. LfLD possessed mono-polar flagellum while LfPF was unflagellated. When LfLD was cultured at 25, 30 and 37 °C, the bacteria had higher motility rate at lower temperatures. Based on our results, this is the first study that showed distinct characteristics between LfPF and LfLD, which may give important leads in elucidating differences in their virulence.
Collapse
Affiliation(s)
- Changle Wang
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazunobu Amako
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shin-ichi Yoshida
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
45
|
Molina SA, Stauffer B, Moriarty HK, Kim AH, McCarty NA, Koval M. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR. Am J Physiol Lung Cell Mol Physiol 2015; 309:L475-87. [PMID: 26115671 PMCID: PMC4556929 DOI: 10.1152/ajplung.00060.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTR(wt/wt)) and CuFi-5 (CFTR(ΔF508/ΔF508)) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na(+) channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells.
Collapse
Affiliation(s)
- Samuel A Molina
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Brandon Stauffer
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Hannah K Moriarty
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Agnes H Kim
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Nael A McCarty
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael Koval
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
46
|
Faron M, Fletcher JR, Rasmussen JA, Apicella MA, Jones BD. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium. PLoS One 2015; 10:e0127458. [PMID: 26010977 PMCID: PMC4444194 DOI: 10.1371/journal.pone.0127458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/15/2015] [Indexed: 01/25/2023] Open
Abstract
Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell), as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris) and had an attenuated growth phenotype in the human AT-II cells. These data extend our understanding of early Francisella infection by demonstrating that Francisella enter significant numbers of AT-II cells within the lung and that the capsule and LPS of wild type Schu S4 helps prevent murine lung damage during infection. Furthermore, our data identified that human AT-II cells allow growth of Schu S4, but these same cells supported poor growth of the attenuated LVS strain in vitro. Collectively, these data further our understanding of the role of AT-II cells in Francisella infections.
Collapse
Affiliation(s)
- Matthew Faron
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Joshua R. Fletcher
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Jed A. Rasmussen
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael A. Apicella
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bradley D. Jones
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
47
|
Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun 2015; 83:2443-52. [PMID: 25824841 DOI: 10.1128/iai.00303-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022] Open
Abstract
Cigarette smoking is the leading preventable cause of death, disease, and disability worldwide. It is well established that cigarette smoke provokes inflammatory activation and impairs antimicrobial functions of human immune cells. Here we explore whether cigarette smoke likewise affects the virulence properties of an important human pathogen, Staphylococcus aureus, and in particular methicillin-resistant S. aureus (MRSA), one of the leading causes of invasive bacterial infections. MRSA colonizes the nasopharynx and is thus exposed to inhalants, including cigarette smoke. MRSA exposed to cigarette smoke extract (CSE-MRSA) was more resistant to macrophage killing (4-fold higher survival; P < 0.0001). CSE-MRSA demonstrated reduced susceptibility to cell lysis (1.78-fold; P = 0.032) and antimicrobial peptide (AMP) (LL-37) killing (MIC, 8 μM versus 4 μM). CSE modified the surface charge of MRSA in a dose-dependent fashion, impairing the binding of particles with charge similar to that of AMPs by 90% (P < 0.0001). These changes persisted for 24 h postexposure, suggesting heritable modifications. CSE exposure increased hydrophobicity by 55% (P < 0.0001), which complemented findings of increased MRSA adherence and invasion of epithelial cells. CSE induced upregulation of mprF, consistent with increased MRSA AMP resistance. S. aureus without mprF had no change in surface charge upon exposure to CSE. In vivo, CSE-MRSA pneumonia induced higher mouse mortality (40% versus 10%) and increased bacterial burden at 8 and 20 h postinfection compared to control MRSA-infected mice (P < 0.01). We conclude that cigarette smoke-induced immune resistance phenotypes in MRSA may be an additional factor contributing to susceptibility to infectious disease in cigarette smokers.
Collapse
|
48
|
Bacterial Adaptation during Chronic Respiratory Infections. Pathogens 2015; 4:66-89. [PMID: 25738646 PMCID: PMC4384073 DOI: 10.3390/pathogens4010066] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/22/2023] Open
Abstract
Chronic lung infections are associated with increased morbidity and mortality for individuals with underlying respiratory conditions such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). The process of chronic colonisation allows pathogens to adapt over time to cope with changing selection pressures, co-infecting species and antimicrobial therapies. These adaptations can occur due to environmental pressures in the lung such as inflammatory responses, hypoxia, nutrient deficiency, osmolarity, low pH and antibiotic therapies. Phenotypic adaptations in bacterial pathogens from acute to chronic infection include, but are not limited to, antibiotic resistance, exopolysaccharide production (mucoidy), loss in motility, formation of small colony variants, increased mutation rate, quorum sensing and altered production of virulence factors associated with chronic infection. The evolution of Pseudomonas aeruginosa during chronic lung infection has been widely studied. More recently, the adaptations that other chronically colonising respiratory pathogens, including Staphylococcus aureus, Burkholderia cepacia complex and Haemophilus influenzae undergo during chronic infection have also been investigated. This review aims to examine the adaptations utilised by different bacterial pathogens to aid in their evolution from acute to chronic pathogens of the immunocompromised lung including CF and COPD.
Collapse
|
49
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
50
|
Xue D, Ma Y, Li M, Li Y, Luo H, Liu X, Wang Y. Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway. Vet Immunol Immunopathol 2014; 163:57-66. [PMID: 25440083 DOI: 10.1016/j.vetimm.2014.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen-host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory response using a primary air-liquid interface (ALI) epithelial culture model generated from bronchial epithelial cells of Ningxia Tan sheep (Ovis aries). The ALI culture of sheep bronchial epithelial cells showed a fully differentiated epithelium comprising distinct epithelial types, including the basal, ciliated and goblet cells. Exposure of ALI cultures to M. ovipneumoniae led to increased expression of Toll-like receptors (TLRs), and components of the myeloid differentiation factor 88 (MyD88)-dependent TLR signaling pathway, including the MyD88, TNF receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinases (IRAKs) and nuclear factor-kappa B (NF-κB), as well as subsequent pro-inflammatory cytokines in the epithelial cells. Of interest, infection with M. ovipneumoniae failed to induce the expression of TANK-binding kinase 1 (TBK1), TRAF3 and interferon regulatory factor 3 (IRF3), key components of the MyD88-independent signaling pathway. These results suggest that the MyD88-dependent TLR pathway may play a crucial role in sheep airway epithelial cells in response to M. ovipneumoniae infection, which also indicate that the ALI culture system may be a reliable model for investigating pathogen-host interactions between M. ovipneumoniae and airway epithelial cells.
Collapse
Affiliation(s)
- Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yanan Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haixia Luo
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|