1
|
Zalejski J, Sun J, Sharma A. Unravelling the Mystery inside Cells by Using Single-Molecule Fluorescence Imaging. J Imaging 2023; 9:192. [PMID: 37754956 PMCID: PMC10532472 DOI: 10.3390/jimaging9090192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Live-cell imaging is a powerful technique to study the dynamics and mechanics of various biological molecules like proteins, organelles, DNA, and RNA. With the rapid evolution of optical microscopy, our understanding of how these molecules are implicated in the cells' most critical physiological roles deepens. In this review, we focus on how spatiotemporal nanoscale live-cell imaging at the single molecule level allows for profound contributions towards new discoveries in life science. This review will start by summarizing how single-molecule tracking has been used to analyze membrane dynamics, receptor-ligand interactions, protein-protein interactions, inner- and extra-cellular transport, gene expression/transcription, and whole organelle tracking. We then move on to how current authors are trying to improve single-molecule tracking and overcome current limitations by offering new ways of labeling proteins of interest, multi-channel/color detection, improvements in time-lapse imaging, and new methods and programs to analyze the colocalization and movement of targets. We later discuss how single-molecule tracking can be a beneficial tool used for medical diagnosis. Finally, we wrap up with the limitations and future perspectives of single-molecule tracking and total internal reflection microscopy.
Collapse
Affiliation(s)
| | | | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; (J.Z.); (J.S.)
| |
Collapse
|
3
|
Li Y, Dinkel H, Pakalniskyte D, Busley AV, Cyganek L, Zhong R, Zhang F, Xu Q, Maywald L, Aweimer A, Huang M, Liao Z, Meng Z, Yan C, Prädel T, Rose L, Moscu‐Gregor A, Hohn A, Yang Z, Qiao L, Mügge A, Zhou X, Akin I, El‐Battrawy I. Novel insights in the pathomechanism of Brugada syndrome and fever-related type 1 ECG changes in a preclinical study using human-induced pluripotent stem cell-derived cardiomyocytes. Clin Transl Med 2023; 13:e1130. [PMID: 36881552 PMCID: PMC9990896 DOI: 10.1002/ctm2.1130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is causing sudden cardiac death (SCD) mainly at young age. Studying the underlying mechanisms associated with BrS type I electrocardiogram (ECG) changes in the presence of fever and roles of autophagy for BrS remains lacking. OBJECTIVES We sought to study the pathogenic role of an SCN5A gene variant for BrS with fever-induced type 1 ECG phenotype. In addition, we studied the role of inflammation and autophagy in the pathomechanism of BrS. METHODS Human-induced pluripotent stem cell (hiPSC) lines from a BrS patient harboring a pathogenic variant (c.3148G>A/p. Ala1050Thr) in SCN5A and two healthy donors (non-BrS) and a CRISPR/Cas9 site-corrected cell line (BrS-corr) were differentiated into cardiomyocytes (hiPSC-CMs) for the study. RESULTS Reductions of Nav 1.5 expression, peak sodium channel current (INa ) and upstroke velocity (Vmax ) of action potentials with an increase in arrhythmic events were detected in BrS compared to non-BrS and BrS-corr cells. Increasing the cell culture temperature from 37 to 40°C (fever-like state) exacerbated the phenotypic changes in BrS cells. The fever-effects were enhanced by protein kinase A (PKA) inhibitor but reversed by PKA activator. Lipopolysaccharides (LPS) but not increased temperature up to 40°C enhanced the autophagy level in BrS-hiPSC-CMs by increasing reactive oxidative species and inhibiting PI3K/AKT signalling, and hence exacerbated the phenotypic changes. LPS enhanced high temperature-related effect on peak INa shown in BrS hiPSC-CMs. Effects of LPS and high temperature were not detected in non-BrS cells. CONCLUSIONS The study demonstrated that the SCN5A variant (c.3148G>A/p.Ala1050Thr) caused loss-of-function of sodium channels and increased the channel sensitivity to high temperature and LPS challenge in hiPSC-CMs from a BrS cell line with this variant but not in two non-BrS hiPSC-CM lines. The results suggest that LPS may exacerbate BrS phenotype via enhancing autophagy, whereas fever may exacerbate BrS phenotype via inhibiting PKA-signalling in BrS cardiomyocytes with but probably not limited to this variant.
Collapse
Affiliation(s)
- Yingrui Li
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Hendrik Dinkel
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Dalia Pakalniskyte
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Alexandra Viktoria Busley
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Stem Cell UnitClinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Stem Cell UnitClinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Rujia Zhong
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Feng Zhang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Qiang Xu
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| | - Lasse Maywald
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Assem Aweimer
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| | - Mengying Huang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zhenxing Liao
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zenghui Meng
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Chen Yan
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Timo Prädel
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Lena Rose
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | | | - Alyssa Hohn
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zhen Yang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Lin Qiao
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Andreas Mügge
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| | - Xiaobo Zhou
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| | - Ibrahim Akin
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| |
Collapse
|
4
|
Isbister JC, Gray B, Offen S, Yeates L, Naoum C, Medi C, Raju H, Semsarian C, Puranik R, Sy RW. Longitudinal assessment of structural phenotype in Brugada syndrome using cardiac magnetic resonance imaging. Heart Rhythm O2 2023; 4:34-41. [PMID: 36713046 PMCID: PMC9877394 DOI: 10.1016/j.hroo.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Despite historically being considered a channelopathy, subtle structural changes have been reported in Brugada syndrome (BrS) on histopathology and cardiac magnetic resonance (CMR) imaging. It is not known if these structural changes progress over time. Objective The study sought to assess if structural changes in BrS evolve over time with serial CMR assessment and to investigate the utility of parametric mapping techniques to identify diffuse fibrosis in BrS. Methods Patients with a diagnosis of BrS based on international guidelines and normal CMR at least 3 years prior to the study period were invited to undergo repeat CMR. CMR images were analyzed de novo and compared at baseline and follow-up. Results Eighteen patients with BrS (72% men; mean age at follow-up 47.4 ± 8.9 years) underwent serial CMR with an average of 5.0 ± 1.7 years between scans. No patients had late gadolinium enhancement (LGE) on baseline CMR, but 4 (22%) developed LGE on follow-up, typically localized to the right ventricular (RV) side of the basal septum. RV end-systolic volume increased over time (P = .04) and was associated with a trend toward reduction in RV ejection fraction (P = .07). Four patients showed a reduction in RV ejection fraction >10%. There was no evidence of diffuse myocardial fibrosis observed on parametric mapping. Conclusions Structural changes may evolve over time with development of focal fibrosis, evidenced by LGE on CMR in a significant proportion of patients with BrS. These findings have implications for our understanding of the pathological substrate in BrS and the longitudinal evaluation of patients with BrS.
Collapse
Affiliation(s)
- Julia C. Isbister
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Belinda Gray
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sophie Offen
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Laura Yeates
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Chris Naoum
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Caroline Medi
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Hariharan Raju
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rajesh Puranik
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Raymond W. Sy
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Lipopolysaccharide Modifies Sodium Current Kinetics through ROS and PKC Signalling in Induced Pluripotent Stem-Derived Cardiomyocytes from Brugada Syndrome Patient. J Cardiovasc Dev Dis 2022; 9:jcdd9040119. [PMID: 35448095 PMCID: PMC9025958 DOI: 10.3390/jcdd9040119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Studies have suggested a connection between inflammation and arrhythmogenesis of Brugada syndrome (BrS). However, experimental studies regarding the roles of inflammation in the arrhythmogenesis of BrS and its underlying mechanism are still lacking. This study aimed to investigate the influence of inflammation on BrS-phenotype features using human-induced stem cell-derived cardiomyocytes (hiPSC-CMs) from a BrS-patient carrying an SCN10A variant (c.3749G > A). After LPS treatment, the peak sodium current decreased significantly in SCN10A-hiPSC-CMs, but not in healthy donor-hiPSC-CMs. LPS also changed sodium channel gating kinetics, including activation, inactivation, and recovery from inactivation. NAC (N-acetyl-l-cysteine), a blocker of ROS (reactive oxygen species), failed to affect the sodium current, but prevented the LPS-induced reduction of sodium channel currents and changes in gating kinetics, suggesting a contribution of ROS to the LPS effects. Hydrogen peroxide (H2O2), a main form of ROS in cells, mimicked the LPS effects on sodium channel currents and gating kinetics, implying that ROS might mediate LPS-effects on sodium channels. The effects of H2O2 could be attenuated by a PKC blocker chelerythrine, indicating that PKC is a downstream factor of ROS. This study demonstrated that LPS can exacerbate the loss-of-function of sodium channels in BrS cells. Inflammation may play an important role in the pathogenesis of BrS.
Collapse
|
6
|
Rangaswamy VV, Saggu DK, Yalagudri S, Calambur N. A case of cardiac sarcoidosis mimiking Brugada syndrome. Indian Pacing Electrophysiol J 2021; 22:47-50. [PMID: 34673214 PMCID: PMC8811276 DOI: 10.1016/j.ipej.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
A 17-year-old boy was admitted for management of ventricular fibrillation (VF) with intermittent Brugada pattern on ECG. On evaluation, cardiac MRI revealed myocardial scar and mediastinal lymphadenopathy. 18-Fluorodeoxyglucose positron emission tomography scan showed inflammation in the heart, lungs, and lymph nodes. He was diagnosed as a case of cardiac sarcoidosis (CS) and treated with steroids. However, there was a reactivation of cardiac inflammation and the development of a second VF storm. Following catheter ablation, the patient's arrhythmia improved. This report highlights the inflammation due to CS mimicking channelopathic features.
Collapse
|
8
|
Li A, Tung R, Shivkumar K, Bradfield JS. Brugada syndrome-Malignant phenotype associated with acute cardiac inflammation? HeartRhythm Case Rep 2017; 3:384-388. [PMID: 28840105 PMCID: PMC5558165 DOI: 10.1016/j.hrcr.2017.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Anthony Li
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Roderick Tung
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jason S Bradfield
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
9
|
Meggiolaro M, Zorzi A, El Maghawry M, Peruzza F, Migliore F, Pittoni GM. Brugada ECG disclosed by acute malaria: is it all about fever and propofol? J Clin Anesth 2013; 25:483-7. [PMID: 23999240 DOI: 10.1016/j.jclinane.2013.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022]
Abstract
Brugada syndrome is an electrical cardiac disease predisposing to ventricular arrhythmias in which typical electrocardiographic (ECG) features consist of nonischemic repolarization abnormalities in the right precordial leads V1-V3. The appearance of a Brugada-ECG pattern is increasingly observed in critically ill patients and is traditionally attributed to the effect of body temperature and/or drug modulation on cardiac ion channels ("acquired Brugada syndrome"). A patient with complicated malaria in whom Brugada-ECG abnormalities appeared in concomitance with fever and propofol administration is presented. The repolarization changes did not disappear until the patient's clinical course improved.
Collapse
Affiliation(s)
- Marco Meggiolaro
- Division of Anesthesiology and Intensive Care, University Hospital of Padova, 31100 Padua, Italy.
| | | | | | | | | | | |
Collapse
|