1
|
Gandhe A, Kumari S, Elizabeth Sobhia M. Rational design of FXR agonists: a computational approach for NASH therapy. Mol Divers 2024; 28:3363-3376. [PMID: 38055145 DOI: 10.1007/s11030-023-10766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome, posing risks to cardiovascular and hepatic health worldwide. Non-alcoholic steatohepatitis (NASH) which is a severe form of NAFLD, has a global prevalence. Therapeutic targets for NASH include THR-β, GLP-1 receptor, PPARα/δ/γ, FGF21 analogs, and FXR, a bile acid nuclear receptor pivotal for regulating bile acid synthesis and excretion. Our study aims to design the non-steroidal FXR agonist for NASH treatment, as FXR's role in the regulation of bile acid processes, rendering it a promising drug target for NASH therapy. Utilizing tropifexor as a reference molecule, we generated a shape-based pharmacophore model with seven features, identifying key binding requirements within the FXR active site. Virtual screening using this model, coupled with molecular docking studies, helped pinpoint potential ligands from diverse small molecule databases. Further analysis via MM/GBSA revealed 12 molecules with binding affinities comparable to tropifexor. Among them, DB15416 exhibited the lowest binding free energy and superior docking scores. To assess its dynamic stability, we subjected DB15416 to molecular dynamics simulations, confirming its suitability as a FXR agonist. These findings suggest that DB15416 holds promise as a FXR agonist for NASH treatment, which can be evaluated by experimental studies.
Collapse
Affiliation(s)
- Akshata Gandhe
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India
| | - Masilamani Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India.
| |
Collapse
|
2
|
Ibrahim MA, Yamasaki T, Furukawa K, Yamasaki K. Fragment-Based Drug Discovery for Trypanosoma brucei Glycosylphosphatidylinositol-Specific Phospholipase C through Biochemical and WaterLOGSY-NMR Methods. J Biochem 2022; 171:619-629. [PMID: 35191956 DOI: 10.1093/jb/mvac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) of Trypanosoma brucei, the causative protozoan parasite of African trypanosomiasis, is a membrane-bound enzyme essential for antigenic variation, because it catalyses the release of the membrane-bound form of variable surface glycoproteins. Here, we performed a fragment-based drug discovery of TbGPI-PLC inhibitors using a combination of enzymatic inhibition assay and water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiment. The TbGPI-PLC was cloned and over-expressed using an Escherichia coli expression system followed by purification using three-phase partitioning and gel filtration. Subsequently, the inhibitory activity of 873 fragment compounds against the recombinant TbGPI-PLC led to the identification of 66 primary hits. These primary hits were subjected to the WaterLOGSY NMR experiment where 10 fragment hits were confirmed to directly bind to the TbGPI-PLC. These included benzothiazole, chlorobenzene, imidazole, indole, pyrazol and quinolinone derivatives. Molecular docking simulation indicated that six of them share a common binding site, which corresponds to the catalytic pocket. The present study identified chemically diverse fragment hits that could directly bind and inhibit the TbGPI-PLC activity which constructed a framework for fragment optimisation or linking towards the design of novel drugs for African trypanosomiasis.
Collapse
Affiliation(s)
- Mohammed Auwal Ibrahim
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna 800001, Nigeria
| | - Tomoko Yamasaki
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| | - Koji Furukawa
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| |
Collapse
|
3
|
Toward Chemical Validation of Leishmania infantum Ribose 5-Phosphate Isomerase as a Drug Target. Antimicrob Agents Chemother 2021; 65:e0189220. [PMID: 33875438 DOI: 10.1128/aac.01892-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely outdated, inadequate, and face mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalyzing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the nonoxidative branch of the pentose phosphate pathway, which catalyzes the interconversion of d-ribose 5-phosphate and d-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB (LiRpiB), performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several fragments were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as antileishmanial agents.
Collapse
|
4
|
Deciphering potential inhibitors targeting THI4 of Fusarium solani sp. to combat fungal keratitis: An integrative computational approach. Comput Biol Chem 2020; 88:107350. [DOI: 10.1016/j.compbiolchem.2020.107350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
|
5
|
Ni Y, Li G, Ji X, Yang Y, Guo X, Sun Q. Identification of an inositol-3-phosphate synthase 1-B gene (AccIPS1-B) from Apis cerana cerana and its role in abiotic stress. Cell Stress Chaperones 2019; 24:1101-1113. [PMID: 31512154 PMCID: PMC6882988 DOI: 10.1007/s12192-019-01032-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 02/03/2023] Open
Abstract
Inositol phosphate synthase (IPS) is a rate-limiting enzyme in myo-inositol biosynthesis, which can regulate stress responses in plants and animals. However, there are few studies on the function of IPS in insects, especially in Apis cerana cerana. In this study, the inositol-3-phosphate synthase 1-B gene (AccIPS1-B) was isolated from Apis cerana cerana, and its connection to antioxidant defence was investigated. The open reading frame of AccIPS1-B was 1542 bp, encoding a 513 amino acid polypeptide. Quantitative real-time PCR analysis revealed that the expression level of AccIPS1-B was highest in pupae of Apis cerana cerana, and it was expressed at higher levels in the thorax than in other tissues tested. Moreover, the expression of AccIPS1-B was significantly upregulated by abiotic stresses. The recombinant AccIPS1-B also displayed significant tolerance to cumene hydroperoxide and HgCl2. In addition, knockdown of AccIPS1-B significantly suppressed the expression of most of the antioxidant genes and decreased the antioxidant enzymatic activities of SOD, POD, and GST. Taken together, these findings indicate that AccIPS1-B may be involved in the response to antioxidant defence and development in Apis cerana cerana.
Collapse
Affiliation(s)
- Yong Ni
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xiaomin Ji
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yaqian Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Ghosh S, Kaushik A, Khurana S, Varshney A, Singh AK, Dahiya P, Thakur JK, Sarin SK, Gupta D, Malhotra P, Mukherjee SK, Bhatnagar RK. An RNAi-based high-throughput screening assay to identify small molecule inhibitors of hepatitis B virus replication. J Biol Chem 2017; 292:12577-12588. [PMID: 28584057 DOI: 10.1074/jbc.m117.775155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/04/2017] [Indexed: 01/28/2023] Open
Abstract
Persistent or chronic infection with the hepatitis B virus (HBV) represents one of the most common viral diseases in humans. The hepatitis B virus deploys the hepatitis B virus X protein (HBx) as a suppressor of host defenses consisting of RNAi-based silencing of viral genes. Because of its critical role in countering host defenses, HBx represents an attractive target for antiviral drugs. Here, we developed and optimized a loss-of-function screening procedure, which identified a potential pharmacophore that abrogated HBx RNAi suppression activity. In a survey of 14,400 compounds in the Maybridge Screening Collection, we prioritized candidate compounds via high-throughput screening based on reversal of green fluorescent protein (GFP)-reported, RNAi-mediated silencing in a HepG2/GFP-shRNA RNAi sensor line. The screening yielded a pharmacologically active compound, N-(2,4-difluorophenyl)-N'-[3-(1H-imidazol-1-yl) propyl] thiourea (IR415), which blocked HBx-mediated RNAi suppression indicated by the GFP reporter assay. We also found that IR415 reversed the inhibitory effect of HBx protein on activity of the Dicer endoribonuclease. We further confirmed the results of the primary screen in IR415-treated, HBV-infected HepG2 cells, which exhibited a marked depletion of HBV core protein synthesis and down-regulation of pre-genomic HBV RNA. Using a molecular interaction analysis system, we confirmed that IR415 selectively targets HBx in a concentration-dependent manner. The screening assay presented here allows rapid and improved detection of small-molecule inhibitors of HBx and related viral proteins. The assay may therefore potentiate the development of next-generation RNAi pathway-based therapeutics and promises to accelerate our search for novel and effective drugs in antiviral research.
Collapse
Affiliation(s)
- Subhanita Ghosh
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Abhinav Kaushik
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Sachin Khurana
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Aditi Varshney
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Avishek Kumar Singh
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Pradeep Dahiya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Shiv Kumar Sarin
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India,.
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agriculture Research Institute, 110012 New Delhi, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India.
| |
Collapse
|
7
|
Makley LN, McMenimen KA, DeVree BT, Goldman JW, McGlasson BN, Rajagopal P, Dunyak BM, McQuade TJ, Thompson AD, Sunahara R, Klevit RE, Andley UP, Gestwicki JE. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science 2015; 350:674-7. [PMID: 26542570 DOI: 10.1126/science.aac9145] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB) and reversed their aggregation in vitro. The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract. It also partially restored protein solubility in the lenses of aged mice in vivo and in human lenses ex vivo. These findings suggest an approach to treating cataracts by stabilizing α-crystallins.
Collapse
Affiliation(s)
- Leah N Makley
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn A McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Brian T DeVree
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua W Goldman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brittney N McGlasson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ponni Rajagopal
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Bryan M Dunyak
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J McQuade
- Center for Chemical Genomics, University of Michigan, Ann Arbor, MI, USA
| | - Andrea D Thompson
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roger Sunahara
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jason E Gestwicki
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA. Center for Chemical Genomics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Drug discovery and human African trypanosomiasis: a disease less neglected? Future Med Chem 2014; 5:1801-41. [PMID: 24144414 DOI: 10.4155/fmc.13.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human African trypanosomiasis (HAT) has been neglected for a long time. The most recent drug to treat this disease, eflornithine, was approved by the US FDA in 2000. Current treatments exhibit numerous problematic side effects and are often ineffective against the debilitating CNS resident stage of the disease. Fortunately, several partnerships and initiatives have been formed over the last 20 years in an effort to eradicate HAT, along with a number of other neglected diseases. This has led to an increasing number of foundations and research institutions that are currently working on the development of new drugs for HAT and tools with which to diagnose and treat patients. New biochemical pathways as therapeutic targets are emerging, accompanied by increasing numbers of new antitrypanosomal compound classes. The future looks promising that this collaborative approach will facilitate eagerly awaited breakthroughs in the treatment of HAT.
Collapse
|
9
|
McMahon RM, Scanlon MJ, Martin JL. Interrogating Fragments Using a Protein Thermal Shift Assay. Aust J Chem 2013. [DOI: 10.1071/ch13279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein thermal shift is a relatively rapid and inexpensive technique for the identification of low molecular weight compound interactions with protein targets. An increase in the melting temperature of the target protein in the presence of a test ligand is indicative of a promising ligand–protein interaction. Due to its simplicity, protein thermal shift is an attractive method for screening libraries and validating hits in drug discovery programs. The methodology has been used successfully in high throughput screens of small molecule libraries, and its application has been extended to report on protein–drug-like-fragment interactions. Here, we review how protein thermal shift has been employed recently in fragment-based drug discovery (FBDD) efforts, and highlight its application to protein–protein interaction targets. Multiple validation of fragment hits by independent means is paramount to ensure efficient and economical progress in a FBDD campaign. We discuss the applicability of thermal shift assays in this light, and discuss more generally what one does when orthogonal approaches disagree.
Collapse
|
10
|
Targeting Protein–Protein Interactions and Fragment-Based Drug Discovery. Top Curr Chem (Cham) 2011; 317:145-79. [DOI: 10.1007/128_2011_265] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|