1
|
Lin SR, Lin SY, Chen CC, Fu YS, Weng CF. Exploring a New Natural Treating Agent for Primary Hypertension: Recent Findings and Forthcoming Perspectives. J Clin Med 2019; 8:E2003. [PMID: 31744165 PMCID: PMC6912567 DOI: 10.3390/jcm8112003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Primary hypertension describes abnormally-high systolic/diastolic blood pressure in a resting condition caused by various genetic or environmental risk factors. Remarkably, severe complications, such as ischemic cardiovascular disease, stroke, and chronic renal disease have led to primary hypertension becoming a huge burden for almost one-third of the total population. Medication is the major regimen for treating primary hypertension; however, recent medications may have adverse effects that attenuate energy levels. Hence, the search for new hypotensive agents from folk or traditional medicine may be fruitful in the discovery and development of new drugs. This review assembles recent findings for natural antihypertensive agents, extracts, or decoctions published in PubMed, and provides insights into the search for new hypotensive compounds based on blood-pressure regulating mechanisms, including the renin-angiotensin-aldosterone system and the sympathetic/adrenergic receptor/calcium channel system.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (S.-R.L.); (C.-C.C.)
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Shiuan-Yea Lin
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Cheng Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (S.-R.L.); (C.-C.C.)
- Camillian Saint Mary’s Hospital Luodong,160 Zhongzheng S. Rd. Luodong, Yilan 26546, Taiwan
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Feng Weng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Basic Medical Science, Center for Transitional Medicine, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
2
|
Kamkaew N, Paracha TU, Ingkaninan K, Waranuch N, Chootip K. Vasodilatory Effects and Mechanisms of Action of Bacopa monnieri Active Compounds on Rat Mesenteric Arteries. Molecules 2019; 24:E2243. [PMID: 31208086 PMCID: PMC6630913 DOI: 10.3390/molecules24122243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
B. monnieri extract (BME) is an abundant source of bioactive compounds, including saponins and flavonoids known to produce vasodilation. However, it is unclear which components are the more effective vasodilators. The aim of this research was to investigate the vasorelaxant effects and mechanisms of action of saponins and flavonoids on rat isolated mesenteric arteries using the organ bath technique. The vasorelaxant mechanisms, including endothelial nitric oxide synthase (eNOS) pathway and calcium flux were examined. Saponins (bacoside A and bacopaside I), and flavonoids (luteolin and apigenin) at 0.1-100 µM caused vasorelaxation in a concentration-dependent manner. Luteolin and apigenin produced vasorelaxation in endothelial intact vessels with more efficacy (Emax 99.4 ± 0.7 and 95.3 ± 2.6%) and potency (EC50 4.35 ± 1.31 and 8.93 ± 3.33 µM) than bacoside A and bacopaside I (Emax 83.6 ± 2.9 and 79.9 ± 8.2%; EC50 10.8 ± 5.9 and 14.6 ± 5.4 µM). Pretreatment of endothelial intact rings, with L-NAME (100 µM); an eNOS inhibitor, or removal of the endothelium reduced the relaxant effects of all compounds. In K+-depolarised vessels suspended in Ca2+-free solution, these active compounds inhibited CaCl2-induced contraction in endothelial denuded arterial rings. Moreover, the active compounds attenuated transient contractions induced by 10 µM phenylephrine in Ca2+-free medium containing EGTA (1 mM). Thus, relaxant effects occurred in both endothelial intact and denuded vessels which signify actions through both endothelium and vascular smooth muscle cells. In conclusion, the flavonoids have about twice the potency of saponins as vasodilators. However, in the BME, there is ~20 × the amount of vaso-reactive saponins and thus are more effective.
Collapse
Affiliation(s)
- Natakorn Kamkaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Tamkeen Urooj Paracha
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Center, Department of Pharmaceutical Technology and Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
3
|
Suhas KS, Parida S, Gokul C, Srivastava V, Prakash E, Chauhan S, Singh TU, Panigrahi M, Telang AG, Mishra SK. Casein kinase 2 inhibition impairs spontaneous and oxytocin-induced contractions in late pregnant mouse uterus. Exp Physiol 2018; 103:621-628. [PMID: 29708304 DOI: 10.1113/ep086826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the inhibition of the protein kinase casein kinase 2 (CK2) alter the uterine contractility? What is the main finding and its importance? Inhibition of CK2 impaired the spontaneous and oxytocin-induced contractility in late pregnant mouse uterus. This finding suggests that CK2 is a novel pathway mediating oxytocin-induced contractility in the uterus and thus opens up the possibility for this class of drugs to be developed as a new class of tocolytics. ABSTRACT The protein kinase casein kinase 2 (CK2) is a ubiquitously expressed serine or threonine kinase known to phosphorylate a number of substrates. The aim of this study was to assess the effect of CK2 inhibition on spontaneous and oxytocin-induced uterine contractions in 19 day pregnant mice. The CK2 inhibitor CX-4945 elicited a concentration-dependent relaxation in late pregnant mouse uterus. CX-4945 and another selective CK2 inhibitor, apigenin, also inhibited the oxytocin-induced contractile response in late pregnant uterine tissue. Apigenin also blunted the prostaglandin F2α response, but CX-4945 did not. Casein kinase 2 was located in the lipid raft fractions of the cell membrane, and disruption of lipid rafts was found to reverse its effect. The results of the present study suggest that CK2, located in lipid rafts of the cell membrane, is an active regulator of spontaneous and oxytocin-induced uterine contractions in the late pregnant mouse.
Collapse
Affiliation(s)
- K S Suhas
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Chandrasekaran Gokul
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Srivastava
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - E Prakash
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sakshi Chauhan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Avinash G Telang
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Santosh K Mishra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
4
|
El-Bassossy HM, Mahmoud MF, Eid BG. The vasodilatory effect of allopurinol mediates its antihypertensive effect: Effects on calcium movement and cardiac hemodynamics. Biomed Pharmacother 2018; 100:381-387. [PMID: 29454286 DOI: 10.1016/j.biopha.2018.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/19/2022] Open
Abstract
Despite the reported reduction in blood pressure in hypertensive patients treated with allopurinol, the mechanism of the allopurinol hypotensive effect is still unclear. In the current study, the hypotensive effect of allopurinol has been fully investigated in hypertensive rats. Hypertension was induced in rats by angiotensin II (120 ng/min/kg) infusion for two weeks. Rats were then subjected to real-time recording of blood pressure, left ventricular pressure and volume and surface ECG. After 10 min of basal recording, allopurinol was slowly injected into the femoral vein with a dose of 10 μmole/kg. Then, invasive blood pressure, cardiac hemodynamics and ECG were continuously recorded for an additional 20 min. In addition, the vasodilation effect of allopurinol was studied using the isolated artery technique. Allopurinol injection reduced systolic, diastolic and pulse blood pressure. Allopurinol suppressed both cardiac systolic and diastolic hemodynamics as is apparent from the reduction in the rate of rise and the rate of fall in left ventricular pressure. Allopurinol reduced the general cardiac output quickly. Allopurinol addition to the organ bath (10-1000 μM) produced significant vasodilation of PE pre-constricted aortae that was not affected by endothelium denudation, L-NAME or indomethacin. However, allopurinol ameliorated the calcium induced contraction of aorta pre-constricted with KCl in calcium-free media. Erk or ROCK inhibition did not attenuated allopurinol produced vasodilation. In conclusion, allopurinol has an antihypertensive effect that is mediated, probably, by reducing cardiac output and decreasing vascular resistance. The vasodilator effect of allopurinol is most likely mediated by calcium blocking activities.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Basma G Eid
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Zhou ZY, Xu JQ, Zhao WR, Chen XL, Jin Y, Tang N, Tang JY. Ferulic acid relaxed rat aortic, small mesenteric and coronary arteries by blocking voltage-gated calcium channel and calcium desensitization via dephosphorylation of ERK1/2 and MYPT1. Eur J Pharmacol 2017; 815:26-32. [PMID: 28989085 DOI: 10.1016/j.ejphar.2017.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Ferulic acid, a natural ingredient presents in several Chinese Materia Medica such as Radix Angelicae Sinensis, has been identified as an important multifunctional and physiologically active small molecule. However, its pharmacological activity in different blood vessel types and underlying mechanisms are unclear. The present study was to investigate the vascular reactivity and the possible action mechanism of FA on aorta, small mesenteric arteries and coronary arteries isolated from Wistar rats. We found FA dose-dependently relieved the contraction of aorta, small mesenteric arteries and coronary arteries induced by different contractors, U46619, phenylephrine (Phe) and KCl. The relaxant effect of FA was not affected by L-NAME (eNOS inhibitor), ODQ (soluble guanylate cyclase inhibitor), and mechanical removal of endothelium in thoracic aortas. The contraction caused by 60mM KCl (60K) was concentration-dependently hindered by FA pretreatment in all three types of arteries. In Ca2+-free 60K solution, FA weakened Ca2+-related contraction in a concentration dependent manner. And FA relaxed both fluoride and phorbol ester which were PKC, ERK and Rho-kinase activators induced contraction in aortic rings with or without Ca2+ in krebs solution. Western blotting experiments in A7r5 cells revealed that FA inhibited calcium sensitization via dephosphorylation of ERK1/2 and MYPT1. Furthermore, the relaxation effect of FA was attenuated by verapamil (calcium channel blocker), ERK inhibitor, and fasudil (ROCK inhibitor). These results provide evidence that FA exhibits endothelium-independent vascular relaxant effect in different types of arteries. The molecular mechanism of vasorelaxation activity of FA probably involved calcium channel inhibition and calcium desensitization.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jia-Qi Xu
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Wai-Rong Zhao
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Xin-Lin Chen
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200032, China.
| | - Nuo Tang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jing-Yi Tang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
6
|
Modification of abomasum contractility by flavonoids present in ruminants diet: in vitro study. Animal 2016; 10:1431-8. [DOI: 10.1017/s1751731116000513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|