1
|
Ding Y, Wang M, Bu H, Li J, Lin X, Xu X. Application of an F0-based genetic assay in adult zebrafish to identify modifier genes of an inherited cardiomyopathy. Dis Model Mech 2023; 16:dmm049427. [PMID: 35481478 PMCID: PMC9239171 DOI: 10.1242/dmm.049427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Modifier genes contribute significantly to our understanding of pathophysiology in human diseases; however, effective approaches to identify modifier genes are still lacking. Here, we aim to develop a rapid F0-based genetic assay in adult zebrafish using the bag3 gene knockout (bag3e2/e2) cardiomyopathy model as a paradigm. First, by utilizing a classic genetic breeding approach, we identified dnajb6b as a deleterious modifier gene for bag3 cardiomyopathy. Next, we established an F0-based genetic assay in adult zebrafish through injection of predicted microhomology-mediated end joining (MMEJ)-inducing single guide RNA/Cas9 protein complex. We showed that effective gene knockdown is maintained in F0 adult fish, enabling recapitulation of both salutary modifying effects of the mtor haploinsufficiency and deleterious modifying effects of the dnajb6b gene on bag3 cardiomyopathy. We finally deployed the F0-based genetic assay to screen differentially expressed genes in the bag3 cardiomyopathy model. As a result, myh9b was identified as a novel modifier gene for bag3 cardiomyopathy. Together, these data prove the feasibility of an F0 adult zebrafish-based genetic assay that can be effectively used to discover modifier genes for inherited cardiomyopathy.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mingmin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiothoracic Surgery, Xiangfan Hospital, Central South University, Changsha 410008, China
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Surgery, The Second Xiangfan Hospital of Central South University, Changsha 410011, China
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Burkart V, Kowalski K, Aldag-Niebling D, Beck J, Frick DA, Holler T, Radocaj A, Piep B, Zeug A, Hilfiker-Kleiner D, dos Remedios CG, van der Velden J, Montag J, Kraft T. Transcriptional bursts and heterogeneity among cardiomyocytes in hypertrophic cardiomyopathy. Front Cardiovasc Med 2022; 9:987889. [PMID: 36082122 PMCID: PMC9445301 DOI: 10.3389/fcvm.2022.987889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Transcriptional bursting is a common expression mode for most genes where independent transcription of alleles leads to different ratios of allelic mRNA from cell to cell. Here we investigated burst-like transcription and its consequences in cardiac tissue from Hypertrophic Cardiomyopathy (HCM) patients with heterozygous mutations in the sarcomeric proteins cardiac myosin binding protein C (cMyBP-C, MYBPC3) and cardiac troponin I (cTnI, TNNI3). Using fluorescence in situ hybridization (RNA-FISH) we found that both, MYBPC3 and TNNI3 are transcribed burst-like. Along with that, we show unequal allelic ratios of TNNI3-mRNA among single cardiomyocytes and unequally distributed wildtype cMyBP-C protein across tissue sections from heterozygous HCM-patients. The mutations led to opposing functional alterations, namely increasing (cMyBP-Cc.927−2A>G) or decreasing (cTnIR145W) calcium sensitivity. Regardless, all patients revealed highly variable calcium-dependent force generation between individual cardiomyocytes, indicating contractile imbalance, which appears widespread in HCM-patients. Altogether, we provide strong evidence that burst-like transcription of sarcomeric genes can lead to an allelic mosaic among neighboring cardiomyocytes at mRNA and protein level. In HCM-patients, this presumably induces the observed contractile imbalance among individual cardiomyocytes and promotes HCM-development.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Valentin Burkart
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - David Aldag-Niebling
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Julia Beck
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Dirk Alexander Frick
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Ante Radocaj
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Institute for Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G. dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Judith Montag
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Pedret A, Catalán Ú, Rubió L, Baiges I, Herrero P, Piñol C, Rodríguez-Calvo R, Canela N, Fernández-Castillejo S, Motilva MJ, Solà R. Phosphoproteomic Analysis and Protein-Protein Interaction of Rat Aorta GJA1 and Rat Heart FKBP1A after Secoiridoid Consumption from Virgin Olive Oil: A Functional Proteomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1536-1554. [PMID: 33502189 DOI: 10.1021/acs.jafc.0c07164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein functional interactions could explain the biological response of secoiridoids (SECs), main phenolic compounds in virgin olive oil (VOO). The aim was to assess protein-protein interactions (PPIs) of the aorta gap junction alpha-1 (GJA1) and the heart peptidyl-prolyl cis-trans isomerase (FKBP1A), plus the phosphorylated heart proteome, to describe new molecular pathways in the cardiovascular system in rats using nanoliquid chromatography coupled with mass spectrometry. PPIs modified by SECs and associated with GJA1 in aorta rat tissue were calpain, TUBA1A, and HSPB1. Those associated with FKBP1A in rat heart tissue included SUCLG1, HSPE1, and TNNI3. In the heart, SECs modulated the phosphoproteome through the main canonical pathways PI3K/mTOR signaling (AKT1S1 and GAB2) and gap junction signaling (GAB2 and GJA1). PPIs associated with GJA1 and with FKBP1A, the phosphorylation of GAB2, and the dephosphorylation of GJA1 and AKT1S1 in rat tissues are promising protein targets promoting cardiovascular protection to explain the health benefits of VOO.
Collapse
Affiliation(s)
- Anna Pedret
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
| | - Laura Rubió
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, Lleida 25198, Spain
| | - Isabel Baiges
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Carme Piñol
- Department of Medicine, Universitat de Lleida, Lleida 25008, Catalonia, Spain
- Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré-IRBLLeida, Lleida 25198, Spain
| | - Ricardo Rodríguez-Calvo
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
- Research Unit on Lipids and Atherosclerosis, Vascular Medicine and Metabolism Unit, Universitat Rovira i Virgili, Reus 43204, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid 28029, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Sara Fernández-Castillejo
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño 26006, Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| |
Collapse
|
5
|
Genetic Restrictive Cardiomyopathy: Causes and Consequences-An Integrative Approach. Int J Mol Sci 2021; 22:ijms22020558. [PMID: 33429969 PMCID: PMC7827163 DOI: 10.3390/ijms22020558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM.
Collapse
|
6
|
Wang J, Wan K, Sun J, Li W, Liu H, Han Y, Chen Y. Phenotypic diversity identified by cardiac magnetic resonance in a large hypertrophic cardiomyopathy family with a single MYH7 mutation. Sci Rep 2018; 8:973. [PMID: 29343710 PMCID: PMC5772531 DOI: 10.1038/s41598-018-19372-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 02/05/2023] Open
Abstract
Limited data is available on phenotypic variations with the same genotype in hypertrophic cardiomyopathy (HCM). The present study aims to explore the relationship between genotype and phenotype characterized by cardiovascular magnetic resonance (CMR) in a large Chinese family. A proband diagnosed with HCM from a multigenerational family underwent next-generation sequencing based on a custom sureSelect panel, including 117 candidate pathogenic genes associated with cardiomyopathies. All genetic results were confirmed by the Sanger sequencing method. All confirmed mutation carriers underwent CMR exam and myocardial tissue characterization using T1 mapping and late gadolinium enhancement (LGE) on a 3T scanner (Siemens Trio, Gemany). After clinical and genetic screening of 36 (including the proband) members of a large Chinese family, nineteen family members are determined to carry the single p.T1377M (c.4130C>T) mutation in the MYH7 gene. Of these 19 mutation carriers, eight are diagnosed with HCM, one was considered as borderline affected and ten are not clinically or phenotypically affected. Different HCM phenotypes are present in the nine affected individuals in this family. In addition, we have found different tissue characteristics assessed by T1 mapping and LGE in these individuals. We describe a family that demonstrates the diverse HCM phenotypes associated with a single MYH7 mutation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Wan
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, P. R. China
| | - Weihao Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hong Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuchi Han
- Department of Medicine (Cardiovascular Division), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|