1
|
Ma J, Björnsson ES, Chalasani N. Hepatotoxicity of Antibiotics and Antifungals and Their Safe Use in Hepatic Impairment. Semin Liver Dis 2024; 44:239-257. [PMID: 38740371 DOI: 10.1055/s-0044-1787062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a rare and unpredictable form of hepatotoxicity. While its clinical course is usually benign, cases leading to liver transplantation or death can occur. Based on modern prospective registries, antimicrobials including antibiotics and antifungals are frequently implicated as common causes. Amoxicillin-clavulanate ranks as the most common cause for DILI in the Western World. Although the absolute risk of hepatotoxicity of these agents is low, as their usage is quite high, it is not uncommon for practitioners to encounter liver injury following the initiation of antibiotic or antifungal therapy. In this review article, mechanisms of hepatoxicity are presented. The adverse hepatic effects of well-established antibiotic and antifungal agents are described, including their frequency, severity, and pattern of injury and their HLA risks. We also review the drug labeling and prescription guidance from regulatory bodies, with a focus on individuals with hepatic impairment.
Collapse
Affiliation(s)
- J Ma
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - E S Björnsson
- Department of Gastroenterology, Landspitali University Hospital Reykjavik, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - N Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
2
|
Which patient factors increase the risk of fluoroquinolone-associated reactions? JAAPA 2023; 36:15-16. [PMID: 36701574 DOI: 10.1097/01.jaa.0000911168.79935.d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ABSTRACT Fluoroquinolones commonly are used to treat a variety of infections in the urinary, gastrointestinal, and respiratory tracts. Clinicians should evaluate patients to ensure that a fluoroquinolone is a safe and effective therapy to treat the infection. This article discusses patient factors that increase the risk for serious adverse drug reactions that can occur with fluoroquinolone use.
Collapse
|
3
|
Reddy GA, Handa M, Garabadu D, Kumar R, Kushawaha PK, Shukla R. Transferrin decorated PLGA encumbered moxifloxacin nanoparticles and in vitro cellular studies. Drug Dev Ind Pharm 2023; 49:129-138. [PMID: 36852720 DOI: 10.1080/03639045.2023.2185463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
PURPOSE Complicated intra-abdominal infection (cIAI) management involves administering antibiotics that destroy the cell wall and the genesis of bacterial lipopolysaccharide (LPS). During the infectious state, the expression of transferrin receptors upregulates on the intestinal epithelial cells, which are considered the site of infection. In the present research, transferrin decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulated moxifloxacin (MOX) were developed for possible targeting of the receptors in the colon. SIGNIFICANCE This study will explore more about the incorporation of transferrin as effective coating material in targeted drug delivery. METHODS Nanoparticles were prepared using nano-emulsification and surface modification with transferrin was done by layer-by-layer methodology and evaluated by powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), FTIR, SEM, antibacterial activity, and cellular uptake studies. RESULTS The formulated NPs exhibit a size of ≈170 nm, PDI ≈ 0.25, zeta potential ≈-4.0 mV, drug loading ≈ 6.8%, and entrapment efficiency of 82%. Transferrin-decorated NPs exhibit tailored release for almost 12 h and in vitro antibacterial activity for 14 h. The cellular uptake studies were done on a RAW264.7 cell line for better determination of transferrin uptake of fabricated NPs. CONCLUSION The above study circumvents around the preparation of transferrin decorated PLGA encumbered MOX NPs intended for cIAI-induced sepsis. PLGA NPs provide tailored release of MOX with primary burst and followed by sustained release. These observations confines with antibacterial activity studies. The prepared transferrin-coated NPs were stable and effectively uptaken by RAW264.7 cells. However, future studies include the preclinical investigation of these NPs in sepsis-induced murine models.
Collapse
Affiliation(s)
- Gayathri Aparnasai Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ravindra Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
4
|
Mustafa S, Devi VK, Pai RS. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles. Drug Deliv Transl Res 2017; 7:27-36. [PMID: 27576453 DOI: 10.1007/s13346-016-0326-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.
Collapse
Affiliation(s)
- Sanaul Mustafa
- Pharmaceutics Division, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Near Lal Bagh Main gate, Hosur Road, Bangalore, Karnataka, 560027, India
| | - V Kusum Devi
- Pharmaceutics Division, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Near Lal Bagh Main gate, Hosur Road, Bangalore, Karnataka, 560027, India.
| | - Roopa S Pai
- Pharmaceutics Division, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Near Lal Bagh Main gate, Hosur Road, Bangalore, Karnataka, 560027, India
| |
Collapse
|
5
|
Stereo-Electronic, Molecular Connectivity, and Geometric Configuration Approaches towards Designing Antibacterial Agents from 1, 3, 4-Thiadiazole as the Starting Molecular Template. ChemistrySelect 2017. [DOI: 10.1002/slct.201601137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Wang N, Zhu L, Zhao X, Yang Y. Analysis on Influential Factors for Anti-Infection Efficacy of Fluoroquinolones. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.51018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Alshammari TM, Larrat EP, Morrill HJ, Caffrey AR, Quilliam BJ, Laplante KL. Risk of hepatotoxicity associated with fluoroquinolones: A national case–control safety study. Am J Health Syst Pharm 2014; 71:37-43. [DOI: 10.2146/ajhp130165] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - E. Paul Larrat
- College of Pharmacy, University of Rhode Island (URI), Kingston; at the time of this study, he was Professor of Pharmacy, College of Pharmacy, URI
| | - Haley J. Morrill
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center (VAMC), Providence, RI, and College of Pharmacy, URI
| | - Aisling R. Caffrey
- Infectious Diseases Research Program, Providence VAMC, and Assistant Professor of Pharmacoepidemiology, College of Pharmacy, URI
| | | | - Kerry L. Laplante
- College of Pharmacy, URI; Providence VAMC; and Adjunct Clinical Associate Professor of Medicine, Brown University, Providence
| |
Collapse
|
8
|
Paterson JM, Mamdani MM, Manno M, Juurlink DN. Fluoroquinolone therapy and idiosyncratic acute liver injury: a population-based study. CMAJ 2012; 184:1565-70. [PMID: 22891208 DOI: 10.1503/cmaj.111823] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although fluoroquinolones are sometimes associated with mild, transient elevations in aminotransferase levels, serious acute liver injury is uncommon. Regulatory warnings have identified moxifloxacin as presenting a particular risk of hepatotoxicity. Thus, we examined the risk of idiosyncratic acute liver injury associated with the use of moxifloxacin relative to other selected antibiotic agents. METHODS We conducted a population-based, nested, case-control study using health care data from Ontario for the period April 2002 to March 2011. We identified cases as outpatients aged 66 years or older with no history of liver disease, and who were admitted to hospital for acute liver injury within 30 days of receiving a prescription for 1 of 5 broad-spectrum antibiotic agents: moxifloxacin, levofloxacin, ciprofloxacin, cefuroxime axetil or clarithromycin. For each case, we selected up to 10 age- and sex-matched controls from among patients who had received a study antibiotic, but who were not admitted to hospital for acute liver injury. We calculated odds ratios (ORs) to determine the association between admission to hospital and previous exposure to an antibiotic agent, using clarithromycin as the reference. RESULTS A total of 144 patients were admitted to hospital for acute liver injury within 30 days of receiving a prescription for one of the identified drugs. Of these patients, 88 (61.1%) died while in hospital. After multivariable adjustment, use of either moxifloxacin (adjusted OR 2.20, 95% confidence interval [CI] 1.21-3.98) or levofloxacin (adjusted OR 1.85, 95% CI 1.01-3.39) was associated with an increase in risk of acute liver injury relative to the use of clarithromycin. We saw no such risk associated with the use of either ciprofloxacin or cefuroxime axetil. INTERPRETATION Among older outpatients with no evidence of liver disease, moxifloxacin and levofloxacin were associated with an increased risk of acute liver injury relative to clarithromycin.
Collapse
|
9
|
Chow AW, Benninger MS, Brook I, Brozek JL, Goldstein EJC, Hicks LA, Pankey GA, Seleznick M, Volturo G, Wald ER, File TM. IDSA Clinical Practice Guideline for Acute Bacterial Rhinosinusitis in Children and Adults. Clin Infect Dis 2012. [DOI: 10.1093/cid/cis370] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Evidence-based guidelines for the diagnosis and initial management of suspected acute bacterial rhinosinusitis in adults and children were prepared by a multidisciplinary expert panel of the Infectious Diseases Society of America comprising clinicians and investigators representing internal medicine, pediatrics, emergency medicine, otolaryngology, public health, epidemiology, and adult and pediatric infectious disease specialties. Recommendations for diagnosis, laboratory investigation, and empiric antimicrobial and adjunctive therapy were developed.
Collapse
Affiliation(s)
- Anthony W. Chow
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Itzhak Brook
- Department of Pediatrics, Georgetown University School of Medicine, Washington, D.C
| | - Jan L. Brozek
- Department of Clinical Epidemiology and Biostatistics
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ellie J. C. Goldstein
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles
- R. M. Alden Research Laboratory, Santa Monica, California
| | - Lauri A. Hicks
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - George A. Pankey
- Department of Infectious Disease Research, Ochsner Clinic Foundation, New Orleans, Louisiana
| | - Mitchel Seleznick
- Division of General Internal Medicine, University of South Florida College of Medicine, Tampa
| | - Gregory Volturo
- Department of Emergency Medicine, University of Massachusetts, Worcester
| | - Ellen R. Wald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Thomas M. File
- Department of Infectious Diseases, Northeast Ohio Medical University, Rootstown
- Summa Health System, Akron, Ohio
| |
Collapse
|
10
|
Licata A, Randazzo C, Morreale I, Butera G, D’Alessandro N, Craxì A. Fluoroquinolone-induced liver injury: three new cases and a review of the literature. Eur J Clin Pharmacol 2012; 68:525-32. [DOI: 10.1007/s00228-011-1201-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/13/2011] [Indexed: 12/27/2022]
|
11
|
|
12
|
Abstract
Antibiotics used by general practitioners frequently appear in adverse-event reports of drug-induced hepatotoxicity. Most cases are idiosyncratic (the adverse reaction cannot be predicted from the drug's pharmacological profile or from pre-clinical toxicology tests) and occur via an immunological reaction or in response to the presence of hepatotoxic metabolites. With the exception of trovafloxacin and telithromycin (now severely restricted), hepatotoxicity crude incidence remains globally low but variable. Thus, amoxicillin/clavulanate and co-trimoxazole, as well as flucloxacillin, cause hepatotoxic reactions at rates that make them visible in general practice (cases are often isolated, may have a delayed onset, sometimes appear only after cessation of therapy and can produce an array of hepatic lesions that mirror hepatobiliary disease, making causality often difficult to establish). Conversely, hepatotoxic reactions related to macrolides, tetracyclines and fluoroquinolones (in that order, from high to low) are much rarer, and are identifiable only through large-scale studies or worldwide pharmacovigilance reporting. For antibiotics specifically used for tuberculosis, adverse effects range from asymptomatic increases in liver enzymes to acute hepatitis and fulminant hepatic failure. Yet, it is difficult to single out individual drugs, as treatment always entails associations. Patients at risk are mainly those with previous experience of hepatotoxic reaction to antibiotics, the aged or those with impaired hepatic function in the absence of close monitoring, making it important to carefully balance potential risks with expected benefits in primary care. Pharmacogenetic testing using the new genome-wide association studies approach holds promise for better understanding the mechanism(s) underlying hepatotoxicity.
Collapse
Affiliation(s)
- Raúl J Andrade
- Hepatology Unit, Gastroenterology Service, Virgen de la Victoria University Hospital Department of Medicine, University of Málaga, Spain
| | | |
Collapse
|