1
|
Micolonghi C, Perrone F, Fabiani M, Caroselli S, Savio C, Pizzuti A, Germani A, Visco V, Petrucci S, Rubattu S, Piane M. Unveiling the Spectrum of Minor Genes in Cardiomyopathies: A Narrative Review. Int J Mol Sci 2024; 25:9787. [PMID: 39337275 PMCID: PMC11431948 DOI: 10.3390/ijms25189787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hereditary cardiomyopathies (CMPs), including arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM), represent a group of heart disorders that significantly contribute to cardiovascular morbidity and mortality and are often driven by genetic factors. Recent advances in next-generation sequencing (NGS) technology have enabled the identification of rare variants in both well-established and minor genes associated with CMPs. Nowadays, a set of core genes is included in diagnostic panels for ACM, DCM, and HCM. On the other hand, despite their lesser-known status, variants in the minor genes may contribute to disease mechanisms and influence prognosis. This review evaluates the current evidence supporting the involvement of the minor genes in CMPs, considering their potential pathogenicity and clinical significance. A comprehensive analysis of databases, such as ClinGen, ClinVar, and GeneReviews, along with recent literature and diagnostic guidelines provides a thorough overview of the genetic landscape of minor genes in CMPs and offers guidance in clinical practice, evaluating each case individually based on the clinical referral, and insights for future research. Given the increasing knowledge on these less understood genetic factors, future studies are essential to clearly assess their roles, ultimately leading to improved diagnostic precision and therapeutic strategies in hereditary CMPs.
Collapse
Affiliation(s)
- Caterina Micolonghi
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Perrone
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Fabiani
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- ALTAMEDICA, Human Genetics, 00198 Rome, Italy
| | - Silvia Caroselli
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Juno Genetics, Reproductive Genetics, 00188 Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vincenzo Visco
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Simona Petrucci
- S. Andrea University Hospital, 00189 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Piane
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
2
|
Ruvinskiy D, Igoshin A, Yurchenko A, Ilina AV, Larkin DM. Resequencing the Yaroslavl cattle genomes reveals signatures of selection and a rare haplotype on BTA28 likely to be related to breed phenotypes. Anim Genet 2022; 53:680-684. [PMID: 35711120 PMCID: PMC9541747 DOI: 10.1111/age.13230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/12/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
The genomes of local livestock could shed light on their genetic history, mechanisms of adaptations to environments and unique genetics. Herein we look into the genetics and adaptations of the Russian native dairy Yaroslavl cattle breed using 22 resequenced individuals and comparing them with two related breeds (Russian Kholmogory and Holstein), and to the taurine set of the 1000 Bull Genomes Project (Run 9). HapFLK analysis with Kholmogory and Holstein breeds (using Yakut cattle as outgroup) resulted in 22 regions under selection (q‐value < 0.01) on 11 chromosomes assigned to Yaroslavl cattle, including a strong signature of selection in the region of the KIT gene on BTA6. The FST (fixation index) with the 1000 Bull Genomes Dataset showed 48 non‐overlapping top (0.1%) FST regions of which three overlapped HapFLK regions. We identified 1982 highly differentiated (FST > 0.40) missense mutations in the Yaroslavl genomes. These genes were enriched in the epidermal growth factor and calcium‐binding functional categories. The top FST intervals contained eight genes with allele frequencies quite different between the Yaroslavl and Kholmogory breeds and the rest of the 1000 Bull Genomes Dataset, including KAT6B, which had a nearly Yaroslavl breed‐specific deleterious missense mutation with the highest FST in our dataset (0.99). This gene is a part of a long haplotype containing other genes from FST and hapFLK analyses and with a negative association with weight and carcass traits according to the genotyping of 30 phenotyped Yaroslavl cattle individuals. Our work provides the industry with candidate genetic variants to be focused on in breed improvement efforts.
Collapse
Affiliation(s)
- Daniil Ruvinskiy
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.,Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Igoshin
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Andrey Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Anna V Ilina
- Federal Williams Research Center of Forage Production & Agroecology, Scientific Research Institute of Livestock Breeding and Forage Production, Yaroslavl Region, Russia
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.,Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Royal Veterinary College, University of London, London, UK
| |
Collapse
|
3
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
4
|
Zhao X, Hou C, Xiao T, Xie L, Li Y, Jia J, Zheng J, Zhang Y, Xu M. An interesting Mybpc3 heterozygous mutation associated with bicuspid aortic valve. Transl Pediatr 2020; 9:610-618. [PMID: 33209723 PMCID: PMC7658766 DOI: 10.21037/tp-20-81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Bicuspid aortic valve (BAV) is a common congenital heart defect (0.5-2.0% in the adult), potentially an onset factor of aortic stenosis (AS). Increasing evidence demonstrates that genetic risk factors play a key role in the pathogenesis of BAV, but the genetic basis underlying this cardiac malformation remains poorly understood. METHODS Whole exome sequencing (WES) was utilized to uncover genetic variants associated with BAV. Pathogenicity score and mode of inheritance through bioinformatics tools were undertook to identify the possible disease-causing mutation. RESULTS A heterozygous Ala58Val mutation in Myosin binding protein C (Mybpc3) was identified out of 2,840 variants in an 11-year-old female patient. The proband and her father were confirmed to be heterozygous carriers of 173 C>T hybridization, and her mother was homozygous negative of the mutation as confirmed through Sanger sequencing. Expression of mRNA in the proband and her father, who also carries the mutation, were almost half of proband's mother. Indicating Mybpc3 (p.Ala58Val) mutation affected its expression, and may play crucial roles for heritable BAV. CONCLUSIONS To our knowledge, this is the first time to report Mybpc3 heterozygous variant associated with heritable BAV. The relationship between the location of Mybpc3 mutation and BAV may provide a novel perspective of understanding this disorder.
Collapse
Affiliation(s)
- Xiaopei Zhao
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Lijian Xie
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yun Li
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jia Jia
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Junming Zheng
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yongwei Zhang
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Meng Xu
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
5
|
Nagai M, Awano H, Yamamoto T, Bo R, Matsuo M, Iijima K. The ACTN3 577XX Null Genotype Is Associated with Low Left Ventricular Dilation-Free Survival Rate in Patients with Duchenne Muscular Dystrophy. J Card Fail 2020; 26:841-848. [DOI: 10.1016/j.cardfail.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
|
6
|
Antonopoulos AS, Lazaros G, Papanikolaou E, Oikonomou E, Vlachopoulos C, Tousoulis D. Aortic regurgitation in competitive athletes: The role of multimodality imaging for clinical decision-making. Eur J Prev Cardiol 2020; 27:1552-1554. [PMID: 31795768 DOI: 10.1177/2047487319892112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alexios S Antonopoulos
- Unit of Inherited Cardiac Conditions and Sports Cardiology (EKKAN), First Department of Cardiology, Athens Medical School, Greece
| | - George Lazaros
- Unit of Inherited Cardiac Conditions and Sports Cardiology (EKKAN), First Department of Cardiology, Athens Medical School, Greece
| | - Evi Papanikolaou
- Unit of Inherited Cardiac Conditions and Sports Cardiology (EKKAN), First Department of Cardiology, Athens Medical School, Greece
| | - Evangelos Oikonomou
- Unit of Inherited Cardiac Conditions and Sports Cardiology (EKKAN), First Department of Cardiology, Athens Medical School, Greece
| | - Charalambos Vlachopoulos
- Unit of Inherited Cardiac Conditions and Sports Cardiology (EKKAN), First Department of Cardiology, Athens Medical School, Greece
| | - Dimitris Tousoulis
- Unit of Inherited Cardiac Conditions and Sports Cardiology (EKKAN), First Department of Cardiology, Athens Medical School, Greece
| |
Collapse
|
7
|
Abstract
Congenital heart disease (CHD) is the most common major congenital anomaly with an incidence of ∼1% of live births and is a significant cause of birth defect-related mortality. The genetic mechanisms underlying the development of CHD are complex and remain incompletely understood. Known genetic causes include all classes of genetic variation including chromosomal aneuploidies, copy number variants, and rare and common single-nucleotide variants, which can be either de novo or inherited. Among patients with CHD, ∼8%-12% have a chromosomal abnormality or aneuploidy, between 3% and 25% have a copy number variation, and 3%-5% have a single-gene defect in an established CHD gene with higher likelihood of identifying a genetic cause in patients with nonisolated CHD. These genetic variants disrupt or alter genes that play an important role in normal cardiac development and in some cases have pleiotropic effects on other organs. This work reviews some of the most common genetic causes of CHD as well as what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
| | - Wendy K Chung
- Department of Pediatrics
- Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
8
|
Hawley MH, Almontashiri N, Biesecker LG, Berger N, Chung WK, Garcia J, Grebe TA, Kelly MA, Lebo MS, Macaya D, Mei H, Platt J, Richard G, Ryan A, Thomson KL, Vatta M, Walsh R, Ware JS, Wheeler M, Zouk H, Mason-Suares H, Funke B. An assessment of the role of vinculin loss of function variants in inherited cardiomyopathy. Hum Mutat 2020; 41:1577-1587. [PMID: 32516855 DOI: 10.1002/humu.24061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 11/05/2022]
Abstract
The ACMG/AMP variant classification framework was intended for highly penetrant Mendelian conditions. While it is appreciated that clinically relevant variants exhibit a wide spectrum of penetrance, accurately assessing and expressing the pathogenicity of variants with lower penetrance can be challenging. The vinculin (VCL) gene illustrates these challenges. Model organism data provide evidence that loss of function of VCL may play a role in cardiomyopathy and aggregate case-control studies suggest low penetrance. VCL loss of function variants, however, are rarely identified in affected probands and therefore there is a paucity of family studies clarifying the clinical significance of individual variants. This study, which aggregated data from >18,000 individuals who underwent gene panel or exome testing for inherited cardiomyopathies, identified 32 probands with VCL loss-of-function variants and confirmed enrichment in probands with dilated cardiomyopathy (odds ratio [OR] = 9.01; confidence interval [CI] = 4.93-16.45). Our data revealed that the majority of these individuals (89.5%) had pediatric onset of disease. Family studies demonstrated that heterozygous loss of function of VCL alone is insufficient to cause cardiomyopathy but that these variants do contribute to disease risk. In conclusion, VCL loss-of-function variants should be reported in a diagnostic setting but need to be clearly distinguished as having lower penetrance.
Collapse
Affiliation(s)
- Megan H Hawley
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Naif Almontashiri
- Faculty of Applied Medical Sciences, Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalie Berger
- Department of Maternal Fetal Medicine, SSM Health St Mary's Hospital, Madison, Wisconsin
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York
| | - John Garcia
- Invitae Corporation, San Francisco, California
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Melissa A Kelly
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Matthew S Lebo
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | | | - Hui Mei
- GeneDx, Inc, Gaithersburg, Maryland
| | - Julia Platt
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Ashley Ryan
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherland
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.,Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals NHS Foundation Trust, Harefield, UK
| | - Matthew Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Hana Zouk
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Heather Mason-Suares
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Birgit Funke
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| |
Collapse
|
9
|
Nees SN, Chung WK. The genetics of isolated congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:97-106. [PMID: 31876989 PMCID: PMC8211463 DOI: 10.1002/ajmg.c.31763] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
The genetic mechanisms underlying congenital heart disease (CHD) are complex and remain incompletely understood. The majority of patients with CHD have an isolated heart defect without other organ system involvement, but the genetic basis of isolated CHD has been even more difficult to elucidate compared to syndromic CHD. Our understanding of the genetics of isolated CHD is advancing in large part due to advances in next generation sequencing, and the list of genes associated with CHD is rapidly expanding. Variants in hundreds of genes have been identified that may cause or contribute to CHD, but a genetic cause can still only be identified in about 20-30% of patients. Identifying a genetic cause for CHD can have an impact on clinical outcomes and prognosis and thus it is important for clinicians to understand when and what to test in patients with isolated CHD. This chapter reviews some of the known genetic mechanisms that contribute to isolated inherited and sporadic CHD as well as recommendations for evaluation and genetic testing in patients with isolated CHD.
Collapse
Affiliation(s)
- Shannon N Nees
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
10
|
Cheng J, Kyle JW, Lang D, Wiedmeyer B, Guo J, Yin K, Huang L, Vaidyanathan R, Su T, Makielski JC. An East Asian Common Variant Vinculin P.Asp841His Was Associated With Sudden Unexplained Nocturnal Death Syndrome in the Chinese Han Population. J Am Heart Assoc 2017; 6:e005330. [PMID: 28373245 PMCID: PMC5533021 DOI: 10.1161/jaha.116.005330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have identified the cardiomyopathy-susceptibility gene vinculin (VCL) mutation M94I may account for a sudden unexplained nocturnal death syndrome (SUNDS) case. We addressed whether VCL common variant D841H is associated with SUNDS. METHODS AND RESULTS In 8 of 120 SUNDS cases, we detected an East Asian common VCL variant p.Asp841His (D841H). Comparing the H841 allele frequency of the general population in the local database (15 of 1818) with SUNDS victims (10 of 240) gives an odds ratio for SUNDS of 5.226 (95% CI, 2.321, 11.769). The VCL-D841H variant was engineered and either coexpressed with cardiac sodium channel (SCN5A) in HEK293 cells or overexpressed in human induced pluripotent stem-cell-derived cardiomyocytes to examine its effects on sodium channel function using the whole-cell patch-clamp method. In HEK293 cells, under physiological pH conditions (pH 7.4), D841H caused a 29% decrease in peak INa amplitude compared to wild type (WT), whereas under acidotic conditions (pH 7.0), D841H decreased further to 43% along with significant negative shift in inactivation compared to WT at pH 7.4. In induced pluripotent stem-cell-derived cardiomyocytes, similar effects of D841H on INa were observed. VCL colocalized with SCN5A at the intercalated disk in human cardiomyocytes. VCL was also confirmed to directly interact with SCN5A, and VCL-D841H did not disrupt the association of VCL and SCN5A. CONCLUSIONS A VCL common variant was genetically and biophysically associated with Chinese SUNDS. The aggravation of loss of function of SCN5A caused by VCL-D841H under acidosis supports that nocturnal sleep respiratory disorders with acidosis may play a key role in the pathogenesis of SUNDS.
Collapse
Affiliation(s)
- Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - John W Kyle
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI
| | - Di Lang
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI
| | - Brandi Wiedmeyer
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI
| | | | - Kun Yin
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ravi Vaidyanathan
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI
| | - Terry Su
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jonathan C Makielski
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI
| |
Collapse
|
11
|
Vinculin variant M94I identified in sudden unexplained nocturnal death syndrome decreases cardiac sodium current. Sci Rep 2017; 7:42953. [PMID: 28218286 PMCID: PMC5317164 DOI: 10.1038/srep42953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 02/01/2023] Open
Abstract
Sudden unexplained nocturnal death syndrome (SUNDS) remains an autopsy negative disorder with unclear etiology. Vinculin (VCL) was linked to sudden arrhythmia death in VCL knockout mice prior to the appearance of cardiomyopathy. We hypothesized VCL mutations underlie risk for SUNDS. A rare heterozygous variant VCL-M94I was found in a SUNDS victim who suffered sudden nocturnal tachypnea and lacked pathogenic variants in known arrhythmia-causing genes. VCL was identified to interact with SCN5A in vitro/vivo. The VCL-M94I was co-expressed with the cardiac sodium channel in HEK293 cells and also overexpressed in induced pluripotent stem cells derived cardiomyocytes (iPSCs-CM). In HEK293 cells with pH 7.4, VCL-M94I caused ~30% decrease in peak sodium current (INa) amplitude compared to WT; under acidotic conditions (pH 7.0) typically found with hypoxia during sleep apnea, M94I resulted in 37% reduction in peak INa compared to WT and the combination of VCL-M94I and pH 7.0 decreased peak INa by ~56% compared to WT at pH 7.4. In iPSCs-CM, similar effects of M94I on reduction of peak INa were observed. This study initially shows both physical and functional interaction between VCL and cardiac sodium channel, and suggests an important role for respiratory acidosis in triggering the fatal arrhythmia underlying SUNDS.
Collapse
|
12
|
Straubinger J, Boldt K, Kuret A, Deng L, Krattenmacher D, Bork N, Desch M, Feil R, Feil S, Nemer M, Ueffing M, Ruth P, Just S, Lukowski R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4-negative mouse hearts. FASEB J 2017; 31:1620-1638. [PMID: 28138039 DOI: 10.1096/fj.201601186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
LIM domain proteins have been identified as essential modulators of cardiac biology and pathology; however, it is unclear which role the cysteine-rich LIM-only protein (CRP)4 plays in these processes. In studying CRP4 mutant mice, we found that their hearts developed normally, but lack of CRP4 exaggerated multiple parameters of the cardiac stress response to the neurohormone angiotensin II (Ang II). Aiming to dissect the molecular details, we found a link between CRP4 and the cardioprotective cGMP pathway, as well as a multiprotein complex comprising well-known hypertrophy-associated factors. Significant enrichment of the cysteine-rich intestinal protein (CRIP)1 in murine hearts lacking CRP4, as well as severe cardiac defects and premature death of CRIP1 and CRP4 morphant zebrafish embryos, further support the notion that depleting CRP4 is incompatible with a proper cardiac development and function. Together, amplified Ang II signaling identified CRP4 as a novel antiremodeling factor regulated, at least to some extent, by cardiac cGMP.-Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., Desch, M., Feil, R., Feil, S., Nemer, M., Ueffing, M., Ruth, P., Just, S., Lukowski, R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4 negative mouse hearts.
Collapse
Affiliation(s)
- Julia Straubinger
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Molecular Biology of Retinal Degenerations and Medical Proteome Center, University of Tübingen, Tübingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lisa Deng
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Diana Krattenmacher
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Nadja Bork
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Matthias Desch
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; and
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; and
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology, and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marius Ueffing
- Institute for Ophthalmic Research, Molecular Biology of Retinal Degenerations and Medical Proteome Center, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany;
| |
Collapse
|
13
|
Sex-specific association of rs4746172 of VCL gene with hypertension in two Han populations from Southern China. Sci Rep 2015; 5:15245. [PMID: 26487440 PMCID: PMC4613695 DOI: 10.1038/srep15245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/17/2015] [Indexed: 01/11/2023] Open
Abstract
Hypertension is the most common and lethal risk factor for cardiovascular disease (CVD). Numerous variants have been associated with hypertension, however, most of which failed to get replication due to ethnic differences. In this study, we analyzed associations of 10 newly reported single nucleotide polymorphisms (SNPs) in Europeans with hypertension in Chinese. A total of 1766 samples consisting of 880 subjects with hypertension and 886 controls were collected and the SNPs were genotyped using multiple assays based on the SNaPshot mini-sequencing approach. Our results revealed a significant genotypic association of rs4746172 of VCL with hypertension with a lower frequency of minor allele in male subjects (OR = 0.70, 95% CI: 0.54-0.92, p = 0.011) but not in females. To validate the result, we genotyped the SNPs in another Chinese population with 546 individuals, and got a consistent association for the rs4746172 (OR = 0.56, 95% CI: 0.38-0.82, p = 2.4 × 10(-3)) in males. The VCL-encoding protein was involved in cardiomyopathy that associated with hypertension, therefore our results suggest the rs4746172 of VCL may be a novel target for clinical interventions to reduce CVD risk by regulating blood pressure in male Chinese.
Collapse
|