1
|
Leven P, Schneider R, Schneider L, Mallesh S, Vanden Berghe P, Sasse P, Kalff JC, Wehner S. β-adrenergic signaling triggers enteric glial reactivity and acute enteric gliosis during surgery. J Neuroinflammation 2023; 20:255. [PMID: 37941007 PMCID: PMC10631040 DOI: 10.1186/s12974-023-02937-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Enteric glia contribute to the pathophysiology of various intestinal immune-driven diseases, such as postoperative ileus (POI), a motility disorder and common complication after abdominal surgery. Enteric gliosis of the intestinal muscularis externa (ME) has been identified as part of POI development. However, the glia-restricted responses and activation mechanisms are poorly understood. The sympathetic nervous system becomes rapidly activated by abdominal surgery. It modulates intestinal immunity, innervates all intestinal layers, and directly interfaces with enteric glia. We hypothesized that sympathetic innervation controls enteric glia reactivity in response to surgical trauma. METHODS Sox10iCreERT2/Rpl22HA/+ mice were subjected to a mouse model of laparotomy or intestinal manipulation to induce POI. Histological, protein, and transcriptomic analyses were performed to analyze glia-specific responses. Interactions between the sympathetic nervous system and enteric glia were studied in mice chemically depleted of TH+ sympathetic neurons and glial-restricted Sox10iCreERT2/JellyOPfl/+/Rpl22HA/+ mice, allowing optogenetic stimulation of β-adrenergic downstream signaling and glial-specific transcriptome analyses. A laparotomy model was used to study the effect of sympathetic signaling on enteric glia in the absence of intestinal manipulation. Mechanistic studies included adrenergic receptor expression profiling in vivo and in vitro and adrenergic agonism treatments of primary enteric glial cell cultures to elucidate the role of sympathetic signaling in acute enteric gliosis and POI. RESULTS With ~ 4000 differentially expressed genes, the most substantial enteric glia response occurs early after intestinal manipulation. During POI, enteric glia switch into a reactive state and continuously shape their microenvironment by releasing inflammatory and migratory factors. Sympathetic denervation reduced the inflammatory response of enteric glia in the early postoperative phase. Optogenetic and pharmacological stimulation of β-adrenergic downstream signaling triggered enteric glial reactivity. Finally, distinct adrenergic agonists revealed β-1/2 adrenoceptors as the molecular targets of sympathetic-driven enteric glial reactivity. CONCLUSIONS Enteric glia act as early responders during post-traumatic intestinal injury and inflammation. Intact sympathetic innervation and active β-adrenergic receptor signaling in enteric glia is a trigger of the immediate glial postoperative inflammatory response. With immune-activating cues originating from the sympathetic nervous system as early as the initial surgical incision, adrenergic signaling in enteric glia presents a promising target for preventing POI development.
Collapse
Affiliation(s)
- Patrick Leven
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Reiner Schneider
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Shilpashree Mallesh
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Louvain, Belgium
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jörg C Kalff
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Hu JJ, Yu XZ, Zhang SQ, Zhang YX, Chen XL, Long ZJ, Hu HZ, Xie DH, Zhang WH, Chen JX, Zhang Q. Hydrogel with ROS scavenging effect encapsulates BR@Zn-BTB nanoparticles for accelerating diabetic mice wound healing via multimodal therapy. iScience 2023; 26:106775. [PMID: 37213227 PMCID: PMC10196962 DOI: 10.1016/j.isci.2023.106775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The strategies for eliminating excess reactive oxygen species (ROS) or suppressing inflammatory responses on the wound bed have proven effective for diabetic wound healing. In this work, a zinc-based nanoscale metal-organic framework (NMOF) functions as a carrier to deliver natural product berberine (BR) to form BR@Zn-BTB nanoparticles, which was, in turn, further encapsulated by hydrogel with ROS scavenging ability to yield a composite system of BR@Zn-BTB/Gel (denoted as BZ-Gel). The results show that BZ-Gel exhibited the controlled release of Zn2+ and BR in simulated physiological media to efficiently eliminated ROS and inhibited inflammation and resulted in a promising antibacterial effect. In vivo experiments further proved that BZ-Gel significantly inhibited the inflammatory response and enhanced collagen deposition, as well as to re-epithelialize the skin wound to ultimately promote wound healing in diabetic mice. Our results indicate that the ROS-responsive hydrogel coupled with BR@Zn-BTB synergistically promotes diabetic wound healing.
Collapse
Affiliation(s)
- Jing-Jing Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Xue-Zhao Yu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Shu-Qin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Yu-Xuan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Xiao-Lin Chen
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Zhu-Jun Long
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Hua-Zhong Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Deng-Hui Xie
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
- Corresponding author
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
- Corresponding author
| |
Collapse
|
3
|
Yu XJ, Xiao T, Liu XJ, Li Y, Qi J, Zhang N, Fu LY, Liu KL, Li Y, Kang YM. Effects of Nrf1 in Hypothalamic Paraventricular Nucleus on Regulating the Blood Pressure During Hypertension. Front Neurosci 2021; 15:805070. [PMID: 34938159 PMCID: PMC8685333 DOI: 10.3389/fnins.2021.805070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
The incidence rate and mortality of hypertension increase every year. Hypothalamic paraventricular nucleus (PVN) plays a critical role on the pathophysiology of hypertension. It has been demonstrated that the imbalance of neurotransmitters including norepinephrine (NE), glutamate (Glu) and γ-aminobutyric acid (GABA) are closely related to sympathetic overactivity and pathogenesis of hypertension. N-methyl-D-aspartate receptor (NMDAR), consisting of GluN1 and GluN2 subunits, is considered to be a glutamate-gated ion channel, which binds to Glu, and activates neuronal activity. Studies have found that the synthesis of respiratory chain enzyme complex was affected and mitochondrial function was impaired in spontaneously hypertensive rats (SHR), further indicating that mitochondria is associated with hypertension. Nuclear respiratory factor 1 (Nrf1) is a transcription factor that modulates mitochondrial respiratory chain and is related to GluN1, GluN2A, and GluN2B promoters. However, the brain mechanisms underlying PVN Nrf1 modulating sympathoexcitation and blood pressure during the development of hypertension remains unclear. In this study, an adeno-associated virus (AAV) vector carrying the shRNA targeting rat Nrf1 gene (shNrf1) was injected into bilateral PVN of male rats underwent two kidneys and one clip to explore the role of Nrf1 in mediating the development of hypertension and sympathoexcitation. Administration of shNrf1 knocked down the expression of Nrf1 and reduced the expression of excitatory neurotransmitters, increased the expression of inhibitory neurotransmitters, and reduced the production of reactive oxygen species (ROS), and attenuated sympathoexcitation and hypertension. The results indicate that knocking down Nrf1 suppresses sympathoexcitation in hypertension by reducing PVN transcription of NMDAR subunits (GluN1, GluN2A, and GluN2B), rebalancing PVN excitatory and inhibitory neurotransmitters, inhibiting PVN neuronal activity and oxidative stress, and attenuating sympathetic activity.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Tong Xiao
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Xiao-Jing Liu
- Department of Cardiology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ying Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Jie Qi
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Nianping Zhang
- Department of Clinical Medicine, Shanxi Datong University School of Medicine, Datong, China
| | - Li-Yan Fu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Yanjun Li
- Department of Microbiology and Immunology, Shanxi Datong University School of Medicine, Datong, China
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| |
Collapse
|
4
|
Ge Q, Yang B, Liu R, Jiang D, Yu H, Wu M, Zhang W. Antioxidant activity of Lactobacillus plantarum NJAU-01 in an animal model of aging. BMC Microbiol 2021; 21:182. [PMID: 34130624 PMCID: PMC8207596 DOI: 10.1186/s12866-021-02248-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Excessive reactive oxygen species (ROS) can cause serious damage to the human body and may cause various chronic diseases. Studies have found that lactic acid bacteria (LAB) have antioxidant and anti-aging effects, and are important resources for the development of microbial antioxidants. This paper was to explore the potential role of an antioxidant strain, Lactobacillus plantarum NJAU-01 screened from traditional dry-cured meat product Jinhua Ham in regulating D-galactose-induced subacute senescence of mice. A total of 48 specific pathogen free Kun Ming mice (SPF KM mice) were randomly allocated into 6 groups: control group with sterile saline injection, aging group with subcutaneously injection of D-galactose, treatments groups with injection of D-galactose and intragastric administration of 107, 108, and 109 CFU/mL L. plantarum NJAU-01, and positive control group with injection of D-galactose and intragastric administration of 1 mg/mL Vitamin C. RESULTS The results showed that the treatment group of L. plantarum NJAU-01 at 109 CFU/mL showed higher total antioxidant capacity (T-AOC) and the antioxidant enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) than those of the other groups in serum, heart and liver. In contrast, the content of the oxidative stress marker malondialdehyde (MDA) showed lower levels than the other groups (P < 0.05). The antioxidant capacity was improved with the supplement of the increasing concentration of L. plantarum NJAU-01. CONCLUSIONS Thus, this study demonstrates that L. plantarum NJAU-01 can alleviate oxidative stress by increasing the activities of enzymes involved in oxidation resistance and decreasing level of lipid oxidation in mice.
Collapse
Affiliation(s)
- Qingfeng Ge
- School of Food Science and Engineering, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, 225127, Yangzhou, Jiangsu, China
- Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Ministry of Education, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Bo Yang
- School of Food Science and Engineering, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, 225127, Yangzhou, Jiangsu, China
| | - Rui Liu
- School of Food Science and Engineering, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, 225127, Yangzhou, Jiangsu, China
- Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Ministry of Education, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Controland Processing, Nanjing University of Finance and Economics, 210023, Nanjing, Jiangsu, China
| | - Hai Yu
- School of Food Science and Engineering, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, 225127, Yangzhou, Jiangsu, China
| | - Mangang Wu
- School of Food Science and Engineering, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, 225127, Yangzhou, Jiangsu, China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Ministry of Education, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Pellicciari C. Twenty years of histochemistry in the third millennium, browsing the scientific literature. Eur J Histochem 2020; 64. [PMID: 33478199 PMCID: PMC7789425 DOI: 10.4081/ejh.2020.3213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
Over the last twenty years, about 240,000 articles where histochemical techniques were used have been published in indexed journals, and their yearly number has progressively increased. The histochemical approach was selected by researchers with very different scientific interests, as the journals in which these articles were published fall within 140 subject categories. The relative proportion of articles in some of these journal categories did change over the years, and browsing the table of contents of the European Journal of Histochemistry, as an example of a strictly histochemical journal, it appeared that in recent years histochemical techniques were preferentially used to mechanistically investigate natural or experimentally induced dynamic processes, with reduced attention to purely descriptive works. It may be foreseen that, in the future, histochemistry will be increasingly focused on studying the molecular pathways responsible for cell differentiation, the maintenance or loss of the differentiated state, and tissue regeneration.
Collapse
|
6
|
Yuan F, Wang P, Yang Y, Shi P, Cheng L. Quercetin-albumin nano-complex as an antioxidant agent against hydrogen peroxide-induced death of spinal cord neurons as a model of preventive care study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|