1
|
Doghish AS, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mohamed AH, Rizk NI, Abulsoud AI, Abdelmaksoud NM, El-Dakroury WA, Aly SH. Natural compounds as regulators of miRNAs: exploring a new avenue for treating colorectal cancer. Funct Integr Genomics 2025; 25:42. [PMID: 39982533 DOI: 10.1007/s10142-025-01547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related death globally, impacting both genders equally. The increasing global mortality rates from CRC are strongly linked to contemporary dietary habits, characterized by excessive meat consumption, alcohol intake, and insufficient physical activity. Thus, there is an unprecedented need to develop less hazardous and new therapies for CRC. CRC affects a substantial global population. The main treatments for CRC include chemotherapy and surgical intervention. Nonetheless, the advancement of innovative, safer, and more effective pharmaceuticals for CRC therapy is of paramount importance due to the widespread adverse effects and the dynamic nature of drug resistance. A growing amount of research suggests that natural chemicals may effectively battle CRC and, in certain cases, serve as alternatives to chemotherapeutics. Evidence suggests that miRNAs control important cancer features, including the maintenance of proliferative signals. These features also involve evasion of growth inhibition, resistance to cell death, and immortalization of replication. Additionally, miRNAs play a role in angiogenesis, invasion, and metastasis. Numerous compounds, including those exhibiting cytotoxic and apoptogenic properties against different malignancies, such as CRC, are sourced from diverse marine and medicinal plants. These chemicals stimulate several signaling pathways originating from different phytochemical families. This article evaluates the existing understanding of the anti-CRC capabilities of several phytochemical substances. Furthermore, their impact on several signaling pathways associated with cancer is examined. This article also highlights the potential of medicinal plants as a source of promising anti-CRC chemicals through modulating miRNA expression and the role of nanoparticle-based miRNA therapeutics in enhancing CRC treatment by improving tumor targeting and minimizing off-target effects.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo- Alexandria Agricultural Road, Tukh Tanbisha, Menofia, Egypt
| | - Ashraf Hassan Mohamed
- Faculty of Physical Therapy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| |
Collapse
|
2
|
Ye Y, Xu G. Construction of a new prognostic model for colorectal cancer based on bulk RNA-seq combined with The Cancer Genome Atlas data. Transl Cancer Res 2024; 13:2704-2720. [PMID: 38988915 PMCID: PMC11231782 DOI: 10.21037/tcr-23-2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths, and improving the prognosis of CRC patients is an urgent concern. The aim of this study was to explore new immunotherapy targets to improve survival in CRC patients. Methods We analyzed CRC-related single-cell data GSE201348 from the Gene Expression Omnibus (GEO) database, and identified differentially expressed genes (DEGs). Subsequently, we performed differential analysis on the rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) transcriptome sequencing data [The Cancer Genome Atlas (TCGA)-CRC queue] and clinical data downloaded from TCGA database. Subgroup analysis was performed using CIBERSORTx and cluster analysis. Finally, biomarkers were identified by one-way cox regression as well as least absolute shrinkage and selection operator (LASSO) analysis. Results In this study, we analyzed CRC-related single-cell data GSE201348, and identified 5,210 DEGs. Subsequently, we performed differential analysis on the TCGA-CRC queue database, and obtained 4,408 DEGs. Then, we categorized the cancer samples in the sequencing data into three groups (k1, k2, and k3), with significant differences observed between the k1 and k2 groups via survival analysis. Further differential analysis on the samples in the k1 and k2 groups identified 1,899 DEGs. A total of 77 DEGs were selected among those DEGs obtained from three differential analyses. Through subsequent Cox univariate analysis and LASSO analysis, seven biomarkers (RETNLB, CLCA4, UGT2A3, SULT1B1, CCL24, BMP5, and ATOH1) were identified and selected to establish a risk score (RS). Conclusions To sum up, this study demonstrates the potential of the seven-gene prognostic risk model as instrumental variables for predicting the prognosis of CRC.
Collapse
Affiliation(s)
- Yu Ye
- Department of General Surgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Gang Xu
- Department of General Surgery, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
3
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Xu Z, Wang J, Wang G. Weighted gene co-expression network analysis for hub genes in colorectal cancer. Pharmacol Rep 2024; 76:140-153. [PMID: 38150140 DOI: 10.1007/s43440-023-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND This study is designed to explore hub genes participating in colorectal cancer (CRC) development through weighted gene co-expression network analysis (WGCNA). METHODS Expression profiles of CRC and normal samples were retrieved from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA), and were subjected to WGCNA to filter differentially expressed genes with significant association with CRC. Functional enrichment analysis and protein-protein interaction (PPI) analysis were carried out to filter the candidate genes, further and survival analysis was performed for the candidate genes to obtain potential regulatory hub genes in CRC. Expression analysis was conducted for the candidate genes and a multifactor model was established. RESULTS After differential analysis and WGCNA, 289 candidate genes were filtered from the GEO and TCGA. Further functional enrichment analysis demonstrated possible regulatory pathways and functions. PPI analysis filtered 15 hub genes and survival analysis indicated a significant correlation of CLCA1, CLCA4, and CPT1A with prognosis of patients with CRC. The multifactor Cox risk model established based on the three genes revealed that if the three genes were a gene set, they had well predictive capacity for the prognosis of patients with CRC. CONCLUSIONS CLCA1, CLCA4, and CPT1A express at low levels in CRC and function as core anti-tumor genes. As a gene set, they can predict prognosis well.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Oncology Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Jianing Wang
- Department of Gastrointestinal Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Guosheng Wang
- Department of Pancreaticobiliary Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150007, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Touchaei AZ, Vahidi S, Samadani AA. Decoding the interaction between miR-19a and CBX7 focusing on the implications for tumor suppression in cancer therapy. Med Oncol 2023; 41:21. [PMID: 38112798 DOI: 10.1007/s12032-023-02251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Cancer is a complex and multifaceted disease characterized by uncontrolled cell growth, genetic alterations, and disruption of normal cellular processes, leading to the formation of malignant tumors with potentially devastating consequences for patients. Molecular research is important in the diagnosis and treatment, one of the molecular mechanisms involved in various cancers is the fluctuation of gene expression. Non-coding RNAs, especially microRNAs, are involved in different stages of cancer. MicroRNAs are small RNA molecules that are naturally produced within cells and bind to the 3'-UTR of target mRNA, repressing gene expression by regulating translation. Overexpression of miR-19a has been reported in human malignancies. Upregulation of miR-19a as a member of the miR-17-92 cluster is key to tumor formation, cell proliferation, survival, invasion, metastasis, and drug resistance. Furthermore. bioinformatics and in vitro data reveal that the miR-19a-3p isoform binds to the 3'UTR of CBX7 and was identified as the miR-19a-3p target gene. CBX7 is known as a tumor suppressor. This review initially describes the regulation of mir-19a in multiple cancers. Accordingly, the roles of miR-19 in affecting its target gene expression CBX7 in carcinoma also be discussed.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Cheng X, Wei Y, Fu Y, Li J, Han L. A novel enterocyte-related 4-gene signature for predicting prognosis in colon adenocarcinoma. Front Immunol 2022; 13:1052182. [PMID: 36532007 PMCID: PMC9755665 DOI: 10.3389/fimmu.2022.1052182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colon adenocarcinoma (COAD) is a fatal disease, and its cases are constantly increasing worldwide. Further, the therapeutic and management strategies for patients with COAD are still unsatisfactory due to the lack of accurate patient classification and prognostic models. Therefore, our study aims to identify prognostic markers in patients with COAD and construct a cell subtype-specific prognostic model with high accuracy and robustness. Methods Single-cell transcriptomic data of six samples were retrieved from the Gene expression omnibus (GEO) database. The cluster annotation and cell-cell communication analysis identified enterocytes as a key player mediating signal communication networks. A four-gene signature prognostic model was constructed based on the enterocyte-related differentially expressed genes (ERDEGs) in patients with COAD of the Cancer Genome Atlas cohort. The prognostic model was validated on three external validation cohorts from the GEO database. The correlation between immune cell infiltration, immunotherapy response, drug sensitivity, and the four-gene signature prognostic model was investigated. Finally, immunohistochemistry (IHC) was performed to determine the expression of the four genes. Results We found that the proportion of epithelial cells was obviously large in COAD samples. Further analysis of epithelial cells showed that the activity of the enterocytes was highest in the cell-cell communication network. Based on enterocyte data, 30 ERDEGs were identified and a 4-gene prognostic model including CPM, CLCA4, ELOVL6, and ATP2A3 was developed and validated. The risk score derived from this model was considered as an independent variable factor to predict overall survival. The patients were divided into high- and low-risk groups based on the median riskscore value. The correlation between immune cell infiltration, immunotherapy response, immune status, clinical characteristics, drug sensitivity, and risk score was analyzed. IHC confirmed the expression of signature genes in tissues from normal individuals, patients with polyps, and COAD. Conclusion In this study, we constructed and validated a novel four-gene signature prognostic model, which could effectively predict the response to immunotherapy and overall survival in patients with COAD. More importantly, this model provides useful insight into the management of colon cancer patients and aids in designing personalized therapy.
Collapse
Affiliation(s)
- Xuehua Cheng
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yong Wei
- Translational Medicine Department, GeneScience Pharmaceuticals Co. Ltd., Changchun, China
| | - Yugang Fu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Li Han, ; Jiacheng Li,
| | - Li Han
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China,*Correspondence: Li Han, ; Jiacheng Li,
| |
Collapse
|