1
|
Edmunds KJ, Okonkwo OC, Sigurdsson S, Lose SR, Gudnason V, Carraro U, Gargiulo P. Soft tissue radiodensity parameters mediate the relationship between self-reported physical activity and lower extremity function in AGES-Reykjavík participants. Sci Rep 2021; 11:20173. [PMID: 34635746 PMCID: PMC8505499 DOI: 10.1038/s41598-021-99699-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Although previous studies have highlighted the association between physical activity and lower extremity function (LEF) in elderly individuals, the mechanisms underlying this relationship remain debated. Our recent work has recognized the utility of nonlinear trimodal regression analysis (NTRA) parameters in characterizing changes in soft tissue radiodensity as a quantitative construct for sarcopenia in the longitudinal, population-based cohort of the AGES-Reykjavík study. For the present work, we assembled a series of prospective multivariate regression models to interrogate whether NTRA parameters mediate the 5-year longitudinal relationship between physical activity and LEF in AGES-Reykjavík participants. Healthy elderly volunteers from the AGES-Reykjavík cohort underwent mid-thigh X-ray CT scans along with a four-part battery of LEF tasks: normal gait speed, fastest-comfortable gait speed, isometric leg strength, and timed up-and-go. These data were recorded at two study timepoints which were separated by approximately 5 years: AGES-I (n = 3157) and AGES-II (n = 3098). Participants in AGES-I were likewise administered a survey to approximate their weekly frequency of engaging in moderate-to-vigorous physical activity (PAAGES-I). Using a multivariate mediation analysis framework, linear regression models were assembled to test whether NTRA parameters mediated the longitudinal relationship between PAAGES-I and LEFAGES-II; all models were covariate-adjusted for age, sex, BMI, and baseline LEF, and results were corrected for multiple statistical comparisons. Our first series of models confirmed that all four LEF tasks were significantly related to PAAGES-I; next, modelling the relationship between PAAGES-I and NTRAAGES-II identified muscle amplitude (Nm) and location (μm) as potential mediators of LEF to test. Finally, adding these two parameters into our PAAGES-I → LEFAGES-II models attenuated the prior effect of PAAGES-I; bootstrapping confirmed Nm and μm as significant partial mediators of the PAAGES-I → LEFAGES-II relationship, with the strongest effect found in isometric leg strength. This work describes a novel approach toward clarifying the mechanisms that underly the relationship between physical activity and LEF in aging individuals. Identifying Nm and μm as significant partial mediators of this relationship provides strong evidence that physical activity protects aging mobility through the preservation of both lean tissue quantity and quality.
Collapse
Affiliation(s)
- Kyle J Edmunds
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Ozioma C Okonkwo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Sarah R Lose
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association (Hjartavernd), Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
- Department of Science, Landspítali, Reykjavík, Iceland
| |
Collapse
|
2
|
Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics (Basel) 2020; 10:diagnostics10080529. [PMID: 32751308 PMCID: PMC7460102 DOI: 10.3390/diagnostics10080529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) produces muscle wasting that is especially severe after complete and permanent damage of lower motor neurons, as can occur in complete conus and cauda equina syndrome. Even in this worst-case scenario, mass and function of permanently denervated quadriceps muscle can be rescued by surface functional electrical stimulation using a purpose designed home-based rehabilitation strategy. Early diagnostics is a key factor in the long-term success of this management. Function of quadriceps muscle was quantitated by force measurements. Muscle gross cross-sections were evaluated by quantitative color computed tomography (CT) and muscle and skin biopsies by quantitative histology, electron microscopy, and immunohistochemistry. Two years of treatment that started earlier than 5 years from SCI produced: (a) an increase in cross-sectional area of stimulated muscles; (b) an increase in muscle fiber mean diameter; (c) improvements in ultrastructural organization; and (d) increased force output during electrical stimulation. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that new trials start soon, providing patients the benefits they need.
Collapse
|
3
|
Raoofi A, Abdollahifar MA, Aliaghaei A, Piryaei A, Hejazi F, Sajadi E, Rashidiani-Rashidabadi A, Sadeghi Y. Peripheral axotomy-induced changes of motor function and histological structure of spinal anterior horn. Eur J Transl Myol 2019; 29:7945. [PMID: 31019660 PMCID: PMC6460218 DOI: 10.4081/ejtm.2019.7945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to evaluate changes of both peripheral motor function and histology of spinal anterior horn in adult rats after unilateral sciatectomy. Ten adult healthy rats served as control group, while in the ten rat experimental group the right sciatic nerve was severed. We followed-up nerve motor function using a sciatic function index and electromyography activity of the gastrocnemious muscle. The rats of the experimental group presented the expected gross locomotor deficit and leg muscle atrophy. At 12 weeks post sciatectomy, L4 and L5 spinal cord segments were removed from the twenty rats and were analysed by istological stereological methods. In the axotomized animals volume of the anterior horn and its content of motor neurons decreased, while the content of astrocytes increased (p < 0.05). Thus, in adult rats, beside the obvious peripheral nerve disfuction, the sciatic nerve axotomy have severe consequences on the soma of the injured motor neurons in the spinal anterior horn. All these quantitative analyses may be usefull to quantify changes occurring in adult animals after axotomy and eventual management to modify the final outcomes in peripheral nerve disorders.
Collapse
Affiliation(s)
- Amir Raoofi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hejazi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Ensieh Sajadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rashidiani-Rashidabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gabellini D, Musarò A. Report on Abstracts of the 15th Meeting of IIM, the Interuniversity Institute of Myology - Assisi (Italy), October 11-14, 2018. Eur J Transl Myol 2018; 28:7957. [PMID: 30662705 PMCID: PMC6317139 DOI: 10.4081/ejtm.2018.7957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
On October 11-14, 2018, the 15th Meeting of the Interuniversity Institute of Myology (IIM) took place in the city Assisi, Italy. Muscle researchers from Italy, and various European and North-American countries gathered to discuss recent results on the physiology and diseases of skeletal muscle. The program showcased keynote lectures from world-renowned international speakers presenting advances in muscle stem cells, circadian rhythm, organismal development and growth, muscle physiology, and bioengineering. Novel, unpublished results from young trainees were presented as oral communications or posters, based on selection from submitted abstracts. Young trainees where directly involved in several aspects of the meeting by being responsible of organizing a scientific session, arranging three round tables tailored to the interests of their peers and chairing all scientific sessions. The meeting offered a unique opportunity for young researchers to present their work, have feedback from more experienced colleagues and establish collaborations to further understanding of muscular diseases and develop therapeutic strategies. The open, informal and friendly atmosphere of the meeting stimulated lively discussions, instrumental to highlight key areas of muscle research and foster scientific cross-fertilization and new collaborations. The meeting was very successful. A sign that the IIM community will continue to deliver important contributions to the training of young students and fellows, promoting our understanding of muscle formation and activity, the mechanism of muscle diseases and the progress toward therapeutic approaches. The Myology field is strong and articulated in basic, translational and early clinical research, moving toward the development of treatments for several muscle diseases as documented by the abstracts of the IIM meeting.
Collapse
Affiliation(s)
- Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Edmunds K, Gíslason M, Sigurðsson S, Guðnason V, Harris T, Carraro U, Gargiulo P. Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities. PLoS One 2018. [PMID: 29513690 PMCID: PMC5841751 DOI: 10.1371/journal.pone.0193241] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sarcopenic muscular degeneration has been consistently identified as an independent risk factor for mortality in aging populations. Recent investigations have realized the quantitative potential of computed tomography (CT) image analysis to describe skeletal muscle volume and composition; however, the optimum approach to assessing these data remains debated. Current literature reports average Hounsfield unit (HU) values and/or segmented soft tissue cross-sectional areas to investigate muscle quality. However, standardized methods for CT analyses and their utility as a comorbidity index remain undefined, and no existing studies compare these methods to the assessment of entire radiodensitometric distributions. The primary aim of this study was to present a comparison of nonlinear trimodal regression analysis (NTRA) parameters of entire radiodensitometric muscle distributions against extant CT metrics and their correlation with lower extremity function (LEF) biometrics (normal/fast gait speed, timed up-and-go, and isometric leg strength) and biochemical and nutritional parameters, such as total solubilized cholesterol (SCHOL) and body mass index (BMI). Data were obtained from 3,162 subjects, aged 66–96 years, from the population-based AGES-Reykjavik Study. 1-D k-means clustering was employed to discretize each biometric and comorbidity dataset into twelve subpopulations, in accordance with Sturges’ Formula for Class Selection. Dataset linear regressions were performed against eleven NTRA distribution parameters and standard CT analyses (fat/muscle cross-sectional area and average HU value). Parameters from NTRA and CT standards were analogously assembled by age and sex. Analysis of specific NTRA parameters with standard CT results showed linear correlation coefficients greater than 0.85, but multiple regression analysis of correlative NTRA parameters yielded a correlation coefficient of 0.99 (P<0.005). These results highlight the specificities of each muscle quality metric to LEF biometrics, SCHOL, and BMI, and particularly highlight the value of the connective tissue regime in this regard.
Collapse
Affiliation(s)
- Kyle Edmunds
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
- * E-mail:
| | - Magnús Gíslason
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
| | | | - Vilmundur Guðnason
- Icelandic Heart Association (Hjartavernd), Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Tamara Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, United States of America
| | - Ugo Carraro
- IRRCS Fondazione Ospedale San Camillo, Venezia, Italy
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
- Department of Rehabilitation, Landspítali, Reykjavík, Iceland
| |
Collapse
|
6
|
Sajer S. Mobility disorders and pain, interrelations that need new research concepts and advanced clinical commitments. Eur J Transl Myol 2017; 27:7179. [PMID: 29299226 PMCID: PMC5745518 DOI: 10.4081/ejtm.2017.7179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
This Perspective will discuss topics recently suggested by Prof. Helmut Kern, Vienna, Austria, to advance the research activities of his team, that is: Topic A, 10 years post RISE; Topic B, New research for new solutions on old research questions; Topic C, Working groups on nerve regeneration, training-parameters of seniors in different ages, muscle adaptation; and studies of connective tissue and cartilage. This Perspective summarizes some of the basic concepts and of the evidence-based tools for developing further translational research activities. Clinically relevant results will ask for continuous interests of Basic and Applied Myologists and for the support during the next five to ten years of public and private granting agencies. All together, they will end in protocols, devices and multidisciplinary managements for persons suffering with muscle denervation, neuromuscular-related or non-related pain and for the increasing population of old, older and oldest senior citizens in Europe and beyond.
Collapse
Affiliation(s)
- Sascha Sajer
- Physiko- und Rheumatherapie, St. Poelten, Austria
| |
Collapse
|
7
|
Patruno M, Melotti L, Gomiero C, Sacchetto R, Topel O, Martinello T. A mini-review of TAT-MyoD fused proteins: state of the art and problems to solve. Eur J Transl Myol 2017; 27:6039. [PMID: 29299217 PMCID: PMC5745379 DOI: 10.4081/ejtm.2017.6039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
The transcriptional activator TAT is a small peptide essential for viral replication and possesses the property of entering the cells from the extracellular milieu, acting as a membrane shuttle. In order to safely differentiate cells an innovative methodology, based on the fusion of transcription factors and the TAT sequence, is discussed in this short review. In several studies, it has been demonstrated that TAT protein can be observed in the cell nucleus after few hours from the inoculation although its way of action is not fully understood. However, further studies will be necessary to develop this methodology for clinical purposes.
Collapse
Affiliation(s)
- Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Ohad Topel
- VTH - Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| |
Collapse
|
8
|
Syverud BC, Mycek MA, Larkin LM. Quantitative, Label-Free Evaluation of Tissue-Engineered Skeletal Muscle Through Multiphoton Microscopy. Tissue Eng Part C Methods 2017; 23:616-626. [PMID: 28810820 PMCID: PMC5653135 DOI: 10.1089/ten.tec.2017.0284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/12/2017] [Indexed: 12/20/2022] Open
Abstract
The lack of tools for assessing engineered tissue viability and function in a noninvasive manner is a major regulatory and translational challenge facing tissue engineers. Label-free, nonlinear optical molecular imaging (OMI) has utilized endogenous nicotinamide adenine dinucleotide and flavin adenine dinucleotide fluorescence to indicate metabolic activity. Similarly, second harmonic generation (SHG) signals from myosin and collagen can measure overall muscle structural integrity and function. The purpose of this study was to demonstrate these OMI techniques for the first time in engineered skeletal muscle and to develop a novel method for evaluating our engineered skeletal muscle units (SMUs) before implantation. Three experimental groups were studied: Control, Steroid Supplemented, and Metabolically Stressed SMUs. After imaging and analysis in ImageJ, a redox ratio (RR) metric was calculated to indicate metabolic activity, and a structure ratio metric was calculated to reflect structural composition. In addition, function was evaluated as tetanic force production in response to electrical stimulation. In living tissues, the RRs successfully distinguished control and metabolically stressed SMUs in both monolayer and 3D form. OMI of myosin and collagen SHG similarly differentiated control SMUs from the steroid supplemented group. With respect to function, steroid supplementation significantly increased active force generation. When comparing functional and OMI measures, a significant correlation was present between overall myosin density and active force generation. This work demonstrates the potential for using label-free OMI to evaluate tissue-engineered skeletal muscle constructs. The positive correlation between structural OMI measures and force production suggests that OMI could potentially serve as an accurate predictor of functional behaviors, such as integration and tissue regeneration, after implantation. This noninvasive OMI methodology, demonstrated for the first time in engineered skeletal muscle, could prove invaluable for assessing our tissue engineering technology and confirming release criteria for validation.
Collapse
Affiliation(s)
- Brian C. Syverud
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Mary-Ann Mycek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Lisa M. Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:8932950. [PMID: 28115982 PMCID: PMC5223076 DOI: 10.1155/2016/8932950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration.
Collapse
|
10
|
Mosole S, Carraro U, Kern H, Loefler S, Zampieri S. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen. Eur J Transl Myol 2016; 26:5972. [PMID: 28078066 PMCID: PMC5220213 DOI: 10.4081/ejtm.2016.5972] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. TRIAL REGISTRATION ClinicalTrials.gov: NCT01679977.
Collapse
Affiliation(s)
- Simone Mosole
- Laboratory of Translation Myology, Department of Biomedical Sciences, University of Padova, Italy
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Ugo Carraro
- IRCCS Fondazione Ospedale San Camillo, Venice, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
- Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria
| | - Stefan Loefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Zampieri
- Laboratory of Translation Myology, Department of Biomedical Sciences, University of Padova, Italy
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| |
Collapse
|
11
|
Appel AA, Larson JC, Jiang B, Zhong Z, Anastasio MA, Brey EM. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants. Ann Biomed Eng 2015; 44:773-81. [PMID: 26487123 DOI: 10.1007/s10439-015-1482-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.
Collapse
Affiliation(s)
- Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Jeffery C Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Bin Jiang
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Zhong Zhong
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, USA
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.
| |
Collapse
|
12
|
Ortolan P, Zanato R, Coran A, Beltrame V, Stramare R. Role of Radiologic Imaging in Genetic and Acquired Neuromuscular Disorders. Eur J Transl Myol 2015; 25:5014. [PMID: 26913153 PMCID: PMC4749014 DOI: 10.4081/ejtm.2015.5014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Great technologic and clinical progress have been made in the last two decades in identifying genetic defects of several neuromuscular diseases, as Spinal Muscular Atrophy, genetic muscular dystrophies and other genetic myopathies. The diagnosis is usually challenging, due to great variability in genetic abnormalities and clinical phenotypes and the poor specificity of complementary analyses, i.e., serum creatine kinase (CK) and electrophysiology. Muscle biopsy represents the gold standard for the diagnosis of genetic neuromuscular diseases, but clinical imaging of muscle tissue is an important diagnostic tool to identify and quantifyies muscle damage. Radiologic imaging is, indeed, increasingly used as a diagnostic tool to describe patterns and the extent of muscle involvement, thanks to modern techniques that enable to definethe definition of degrees of muscle atrophy and changes in connective tissue. They usually grade the severity of the disease process with greater accuracy than clinical scores. Clinical imaging is more than complementary to perform muscle biopsy, especially as ultrasound scans are often mandatory to identify the muscle to be biopsied. We will here detail and provideWe will herein provide detailed examples of the radiologic methods that can be used in genetic and acquired neuromuscular disorders, stressing pros and cons. KEY WORDS Muscle Imaging, MRI, CT, genetic muscle disorders, myopathies, dystrophies.
Collapse
Affiliation(s)
- Paolo Ortolan
- Radiology Unit, Department of Medicine, University of Padova, Italy
| | | | | | | | | |
Collapse
|
13
|
Carraro U, Edmunds KJ, Gargiulo P. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation. Eur J Transl Myol 2015; 25:5133. [PMID: 26913154 PMCID: PMC4749015 DOI: 10.4081/ejtm.2015.5133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the gain and loss in muscle mass. These results highlight the particular utility of this modality in the quantitative longitudinal assessment of the responses of skeletal muscle to long-term denervation and h-b FES recovery.
Collapse
Affiliation(s)
- Ugo Carraro
- IRRCS Fondazione Ospedale San Camillo, Venezia, Italy
| | - Kyle J. Edmunds
- Institute for Biomedical and Neural Engineering, Reykjavik University
- Landspítali, Reykjavík, Iceland
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavik University
- Landspítali, Reykjavík, Iceland
| |
Collapse
|