1
|
Ravara B, Giuriati W, Zampieri S, Kern H, Pond AL. Translational mobility medicine and ugo carraro: a life of significant scientific contributions reviewed in celebration. Neurol Res 2024; 46:139-156. [PMID: 38043115 DOI: 10.1080/01616412.2023.2258041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/04/2023] [Indexed: 12/05/2023]
Abstract
Prof. Ugo Carraro reached 80 years of age on 23 February 2023, and we wish to celebrate him and his work by reviewing his lifetime of scientific achievements in Translational Myology. Currently, he is a Senior Scholar with the University of Padova, Italy, where, as a tenured faculty member, he founded the Interdepartmental Research Center of Myology. Prof. Carraro, a pioneer in skeletal muscle research, is a world-class expert in structural and molecular investigations of skeletal muscle biology, physiology, pathology, and care. An authority in bidimensional gel electrophoresis for myosin light chains, he was the first to separate mammalian muscle myosin heavy chain isoforms by SDS-gel electrophoresis. He has demonstrated that long-term denervated muscle can survive denervation by myofiber regeneration, and shown that an athletic lifestyle has beneficial impacts on muscle reinnervation. He has utilized his expertise in translational myology to develop and validate rehabilitative treatments for denervated and ageing skeletal muscle. He has authored more than 160 PubMed listed papers and numerous scholarly books, including his recent autobiography. Prof. Carraro founded and serves as Editor-in-Chief of the European Journal of Translational Myology and Mobility Medicine. He has organized more than 40 Padua Muscle Days Meetings and continues this, encouraging students and young scientists to participate. As he dreams endlessly, he is currently validating non-invasive analyses on saliva, a promising approach that will allow increased frequency sampling to analyze systemic factors during the transient effects of training and rehabilitation by his proposed Full-Body in- Bed Gym for bed-ridden elderly.
Collapse
Affiliation(s)
- Barbara Ravara
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Walter Giuriati
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology Sciences, Padua University Hospital, Padua, Italy
| | - Helmut Kern
- Physiko- und Rheumatherapie, Ludwig Boltzmann Institute for Rehabilitation Research, Sankt Pölten, Austria
| | - Amber L Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
2
|
Anderson LB, Ravara B, Hameed S, Latour CD, Latour SM, Graham VM, Hashmi MN, Cobb B, Dethrow N, Urazaev AK, Davie JK, Albertin G, Carraro U, Zampieri S, Pond AL. MERG1A Protein Abundance Increases in the Atrophied Skeletal Muscle of Denervated Mice, But Does Not Affect NFκB Activity. J Neuropathol Exp Neurol 2021; 80:776-788. [PMID: 34363662 DOI: 10.1093/jnen/nlab062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle atrophy may occur with disease, injury, decreased muscle use, starvation, and normal aging. No reliably effective treatments for atrophy are available, thus research into the mechanisms contributing to muscle loss is essential. The ERG1A K+ channel contributes to muscle loss by increasing ubiquitin proteasome proteolysis (UPP) in the skeletal muscle of both unweighted and cachectic mice. Because the mechanisms which produce atrophy vary based upon the initiating factor, here we investigate atrophy produced by denervation. Using immunohistochemistry and immunoblots, we demonstrate that ERG1A protein abundance increases significantly in the Gastrocnemius muscle of rodents 7 days after both sciatic nerve transection and hind limb unweighting. Further, we reveal that ectopic expression of a Merg1a encoded plasmid in normal mouse Gastrocnemius muscle has no effect on activity of the NFκB transcription factor family, a group of proteins which contribute to muscle atrophy by modulation of the UPP. Further, although NFκB activity increases significantly after denervation, we show that expression of a plasmid encoding a dominant negative Merg1a mutant in Gastrocnemius muscle prior to denervation, has no effect on NFκB activity. Thus, although the ERG1A K+ channel increases UPP, it does not do so through modulation of NFκB transcription factors.
Collapse
Affiliation(s)
- Luke B Anderson
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Barbara Ravara
- Department of Surgery, Oncology, and Gastroenterology and Department of Biomedical Sciences, University of Padova, Padova, Italy (BR, GA, SZ).,Department of Neuroscience (DNS), University of Padova, Padova, Italy (BR, GA).,A&C M-C Foundation for Translational Myology, Padova, Italy (BR, UC)
| | - Sohaib Hameed
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Chase D Latour
- Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina, USA (CDL)
| | - Sawyer M Latour
- Doisey School of Health, Saint Louis University, St. Louis, Missouri, USA (SML, VMG)
| | - Valerie M Graham
- Doisey School of Health, Saint Louis University, St. Louis, Missouri, USA (SML, VMG)
| | - Mariam N Hashmi
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Brittan Cobb
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Nicole Dethrow
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| | - Albert K Urazaev
- School of Arts, Sciences and Education, Ivy Technical Community College, Lafayette, Indiana, USA (AKU)
| | - Judy K Davie
- Biochemistry Department, Southern Illinois University, Carbondale, Illinois, USA(JKD)
| | - Giovanna Albertin
- Department of Surgery, Oncology, and Gastroenterology and Department of Biomedical Sciences, University of Padova, Padova, Italy (BR, GA, SZ).,Department of Neuroscience (DNS), University of Padova, Padova, Italy (BR, GA)
| | - Ugo Carraro
- A&C M-C Foundation for Translational Myology, Padova, Italy (BR, UC)
| | - Sandra Zampieri
- Department of Surgery, Oncology, and Gastroenterology and Department of Biomedical Sciences, University of Padova, Padova, Italy (BR, GA, SZ)
| | - Amber L Pond
- Anatomy Department, Southern Illinois University, Carbondale, Illinois, USA (LBA, SH, MNH, BC, ND, ALP)
| |
Collapse
|