1
|
Sagastegui Alva PG, Boesendorfer A, Aszmann OC, Ibáñez J, Farina D. Excitation of natural spinal reflex loops in the sensory-motor control of hand prostheses. Sci Robot 2024; 9:eadl0085. [PMID: 38809994 DOI: 10.1126/scirobotics.adl0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.
Collapse
Affiliation(s)
| | - Anna Boesendorfer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jaime Ibáñez
- Department of Bioengineering, Imperial College London, London, UK
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
2
|
Phunruangsakao C, Achanccaray D, Bhattacharyya S, Izumi SI, Hayashibe M. Effects of visual-electrotactile stimulation feedback on brain functional connectivity during motor imagery practice. Sci Rep 2023; 13:17752. [PMID: 37853020 PMCID: PMC10584917 DOI: 10.1038/s41598-023-44621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
The use of neurofeedback is an important aspect of effective motor rehabilitation as it offers real-time sensory information to promote neuroplasticity. However, there is still limited knowledge about how the brain's functional networks reorganize in response to such feedback. To address this gap, this study investigates the reorganization of the brain network during motor imagery tasks when subject to visual stimulation or visual-electrotactile stimulation feedback. This study can provide healthcare professionals with a deeper understanding of the changes in the brain network and help develop successful treatment approaches for brain-computer interface-based motor rehabilitation applications. We examine individual edges, nodes, and the entire network, and use the minimum spanning tree algorithm to construct a brain network representation using a functional connectivity matrix. Furthermore, graph analysis is used to detect significant features in the brain network that might arise in response to the feedback. Additionally, we investigate the power distribution of brain activation patterns using power spectral analysis and evaluate the motor imagery performance based on the classification accuracy. The results showed that the visual and visual-electrotactile stimulation feedback induced subject-specific changes in brain activation patterns and network reorganization in the [Formula: see text] band. Thus, the visual-electrotactile stimulation feedback significantly improved the integration of information flow between brain regions associated with motor-related commands and higher-level cognitive functions, while reducing cognitive workload in the sensory areas of the brain and promoting positive emotions. Despite these promising results, neither neurofeedback modality resulted in a significant improvement in classification accuracy, compared with the absence of feedback. These findings indicate that multimodal neurofeedback can modulate imagery-mediated rehabilitation by enhancing motor-cognitive communication and reducing cognitive effort. In future interventions, incorporating this technique to ease cognitive demands for participants could be crucial for maintaining their motivation to engage in rehabilitation.
Collapse
Affiliation(s)
- Chatrin Phunruangsakao
- Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - David Achanccaray
- Presence Media Research Group, Hiroshi Ishiguro Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Saugat Bhattacharyya
- School of Computing, Engineering and Intelligent Systems, Ulster University, Northland Road, Londonderry, BT48 7JL, UK
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Mitsuhiro Hayashibe
- Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Imatz-Ojanguren E, Keller T. Evoked sensations with transcutaneous electrical stimulation with different frequencies, waveforms, and electrode configurations. Artif Organs 2023; 47:117-128. [PMID: 36102414 DOI: 10.1111/aor.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Current Perception Threshold (CPT) is a technique used for diagnostic purposes that applies sinusoidal currents transcutaneously at 5 Hz, 250 Hz, and 2KHz to preferentially excite C, Aδ, and Aβ afferent nerve fibers correspondingly. This fact may be interesting for evoking different electrotactile sensations for a wide variety of applications. METHODS Sensations evoked by 5 Hz, 250 Hz, and 2KHz frequencies; sinusoidal, square, and 250 μs-pulsed waveforms; and conventional and concentric electrode configurations were analyzed in 19 healthy volunteers. Stimuli were applied in the dorsum of the hand in a double-blind manner and CPTs were defined based on participants' verbal feedback. After each stimulus participants filled in a form with sensation modality, irradiation, intensity, and emotion descriptors. RESULTS The frequency showed a significant effect on the four domains of evoked sensations and the waveform showed a significant effect on the modality domain. For most waveform and electrode configuration combinations, 5 Hz evoked mostly a low-intensity prickling sensation; 250 Hz mostly evoked an uncomfortable medium-intensity tingling sensation; and 2KHz mostly evoked a low-intensity tingling sensation. No thermal or noxious sensations were evoked. A significant interaction effect was only found between the frequency and the waveform factors. The electrode configuration did not show either a significant effect on the evoked sensations or an interaction effect with the frequency or waveform type. CONCLUSIONS Transcutaneous electrical stimulation may evoke different sensations at different frequencies due to the preferential activation of different fiber types. The results of these analysis could be used to enhance human-machine/computer-interaction systems based on electrotactile feedback.
Collapse
Affiliation(s)
| | - Thierry Keller
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Opinions on noninvasive sensory feedback of upper limb prosthetic users. Prosthet Orthot Int 2022; 46:591-600. [PMID: 36515904 DOI: 10.1097/pxr.0000000000000160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/14/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Restoring touch perception for individuals with upper extremity limb loss is an ambitious task. It is important to understand how persons with upper limb loss think this would be best achieved. METHODS An anonymous online survey was developed to obtain data from prosthetic users. Participants ranked the perceived acceptability and effectiveness of noninvasive sensory feedback to areas of intact sensation not typically involved in sensory feedback (i.e., the arm). The focus was on 4 main types of haptic information-object contact, proprioception, surface texture, and grasp force-as well as how best to convey those senses with various stimuli. The users were asked to grade themselves in certain tasks and then analyze which tasks would be improved with sensory feedback. Associations were explored between demographic characteristics and interest in sensory feedback. RESULTS Nationally, prostheses providers sent more than 2000 email invitations to the online survey and received 142 unique responses. Responses indicated interest in sensory feedback through prosthetic limbs by individuals with upper limb loss. The most popular pairing of haptic information with sensory substitution was grasp force paired with gentle vibration. Tasks that most persons taking the survey agreed would benefit from sensory feedback were zipping a jacket, tying shoes, buttoning a shirt, and using a cup. No difference was observed in interest between sex and employment status, but a significant decrease (P = .004) was seen in interest among participants with more years of prosthetic use. DISCUSSION The results from this national survey of upper extremity prosthetic users can be used to help guide the development of noninvasive sensory feedback options.
Collapse
|
5
|
Cha H, An S, Choi S, Yang S, Park S, Park S. Study on Intention Recognition and Sensory Feedback: Control of Robotic Prosthetic Hand Through EMG Classification and Proprioceptive Feedback Using Rule-based Haptic Device. IEEE TRANSACTIONS ON HAPTICS 2022; 15:560-571. [PMID: 35622790 DOI: 10.1109/toh.2022.3177714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, for intention recognition, a convolutional neural network (CNN) classification model using the electromyography (EMG) signals acquired from the subject was developed. For sensory feedback, a rule-based wearable proprioceptive feedback haptic device, a new method for providing feedback on the grip information of a robotic prosthesis was proposed. Then, we constructed a closed-loop integrated system consisting of the CNN-based EMG classification model, the proposed haptic device, and a robotic prosthetic hand. Finally, an experiment was conducted in which the closed-loop integrated system was used to simultaneously evaluate the performance of the intention recognition and sensory feedback for a subject. The trained EMG classification model and the proposed haptic device showed the intention recognition and sensory feedback performance with 97% or higher accuracy in 10 grip states. Although some errors occurred in the intention recognition using the EMG classification model, in general, the grip intention of the subject was grasped relatively accurately, and the grip pattern was also accurately transmitted to the subject by the proposed haptic device. The integrated system which consists of the intention recognition using the CNN-based EMG classification model and the sensory feedback using the proposed haptic device is expected to be utilized for robotic prosthetic hand prosthesis control of limb loss participants.
Collapse
|
6
|
Zhou Z, Yang Y, Liu J, Zeng J, Wang X, Liu H. Electrotactile Perception Properties and Its Applications: A Review. IEEE TRANSACTIONS ON HAPTICS 2022; 15:464-478. [PMID: 35476571 DOI: 10.1109/toh.2022.3170723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the increased demands of human-machine interaction, haptic feedback is becoming increasingly critical. However, the high cost, large size and low efficiency of current haptic systems severely hinder further development. As a portable and efficient technology, cutaneous electrotactile stimulation has shown promising potential for these issues. This paper presents a review on and insight into cutaneous electrotactile perception and its applications. Research results on perceptual properties and evaluation methods have been summarized and discussed to understand the effects of electrotactile stimulation on humans. Electrotactile applications are presented in categories to understand the methods and progress in various fields such as prostheses control, sensory substitution, sensory restoration and sensorimotor restoration. State of the art has demonstrated the superiority of electrotactile feedback, its efficiency and its flexibility. However, the complex factors and the limitations of evaluation methods made it challenging for precise electrotactile control. Groundbreaking innovation in electrotactile theory is expected to overcome challenges such as precise perception control, information capacity increasing, comprehension burden reducing and implementation costs.
Collapse
|
7
|
Guémann M, Halgand C, Bastier A, Lansade C, Borrini L, Lapeyre É, Cattaert D, de Rugy A. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees. J Neuroeng Rehabil 2022; 19:59. [PMID: 35690860 PMCID: PMC9188052 DOI: 10.1186/s12984-022-01038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current myoelectric prostheses lack proprioceptive information and rely on vision for their control. Sensory substitution is increasingly developed with non-invasive vibrotactile or electrotactile feedback, but most systems are designed for grasping or object discriminations, and few were tested for online control in amputees. The objective of this work was evaluate the effect of a novel vibrotactile feedback on the accuracy of myoelectric control of a virtual elbow by healthy subjects and participants with an upper-limb amputation at humeral level. METHODS Sixteen, healthy participants and 7 transhumeral amputees performed myoelectric control of a virtual arm under different feedback conditions: vision alone (VIS), vibration alone (VIB), vision plus vibration (VIS + VIB), or no feedback at all (NO). Reach accuracy was evaluated by angular errors during discrete as well as back and forth movements. Healthy participants' workloads were assessed with the NASA-TLX questionnaire, and feedback conditions were ranked according to preference at the end of the experiment. RESULTS Reach errors were higher in NO than in VIB, indicating that our vibrotactile feedback improved performance as compared to no feedback. Conditions VIS and VIS+VIB display similar levels of performance and produced lower errors than in VIB. Vision remains therefore critical to maintain good performance, which is not ameliorated nor deteriorated by the addition of vibrotactile feedback. The workload associated with VIB was higher than for VIS and VIS+VIB, which did not differ from each other. 62.5% of healthy subjects preferred the VIS+VIB condition, and ranked VIS and VIB second and third, respectively. CONCLUSION Our novel vibrotactile feedback improved myoelectric control of a virtual elbow as compared to no feedback. Although vision remained critical, the addition of vibrotactile feedback did not improve nor deteriorate the control and was preferred by participants. Longer training should improve performances with VIB alone and reduce the need of vision for close-loop prosthesis control.
Collapse
Affiliation(s)
- Matthieu Guémann
- HYBRID Team, INCIA, CNRS, UMR 5287, Bordeaux, France. .,Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes,Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny, France.
| | | | | | | | - Léo Borrini
- Physical and Rehabilitation Medicine Department, Percy Military Hospital, Clamart, France
| | - Éric Lapeyre
- Physical and Rehabilitation Medicine Department, Percy Military Hospital, Clamart, France
| | | | - Aymar de Rugy
- HYBRID Team, INCIA, CNRS, UMR 5287, Bordeaux, France
| |
Collapse
|
8
|
Touch, Texture and Haptic Feedback: A Review on How We Feel the World around Us. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Touch is one most of the important aspects of human life. Nearly all interactions, when broken down, involve touch in one form or another. Recent advances in technology, particularly in the field of virtual reality, have led to increasing interest in the research of haptics. However, accurately capturing touch is still one of most difficult engineering challenges currently being faced. Recent advances in technology such as those found in microcontrollers which allow the creation of smaller sensors and feedback devices may provide the solution. Beyond capturing and measuring touch, replicating touch is also another unique challenge due to the complexity and sensitivity of the human skin. The development of flexible, soft-wearable devices, however, has allowed for the creating of feedback systems that conform to the human form factor with minimal loss of accuracy, thus presenting possible solutions and opportunities. Thus, in this review, the researchers aim to showcase the technologies currently being used in haptic feedback, and their strengths and limitations.
Collapse
|
9
|
Zhang J, Hao M, Yang F, Liang W, Sun A, Chou CH, Lan N. Evaluation of multiple perceptual qualities of transcutaneous electrical nerve stimulation for evoked tactile sensation in forearm amputees. J Neural Eng 2022; 19. [PMID: 35320789 DOI: 10.1088/1741-2552/ac6062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Evoked tactile sensation (ETS) elicited by transcutaneous electrical nerve stimulation (TENS) is promising to convey digit-specific sensory information to amputees naturally and non-invasively. Fitting ETS-based sensory feedback to amputees entails customizing coding of multiple sensory information for each stimulation site. This study was to elucidate the consistency of percepts and qualities by TENS at multiple stimulation sites in amputees retaining ETS. APPROACH Five transradial amputees with ETS and fourteen able-bodied subjects participated in this study. Surface electrodes with small size (10 mm in diameter) were adopted to fit the restricted projected finger map on the forearm stump of amputees. Effects of stimulus frequency on sensory types were assessed, and the map of perceptual threshold for each sensation was characterized. Sensitivity for vibration and buzz sensations was measured using distinguishable difference in stimulus pulse width. Rapid assessments for modulation ranges of pulse width at fixed amplitude and frequency were developed for coding sensory information. Buzz sensation was demonstrated for location discrimination relating to prosthetic fingers. MAIN RESULTS Vibration and buzz sensations were consistently evoked at 20 Hz and 50 Hz as dominant sensation types in all amputees and able-bodied subjects. Perceptual thresholds of different sensations followed a similar strength-duration curve relating stimulus amplitude to pulse width. The averaged distinguishable difference in pulse width was 12.84 ± 7.23 μs for vibration and 15.21 ± 6.47 μs for buzz in able-bodied subjects, and 14.91 ± 10.54 μs for vibration and 11.30 ± 3.42 μs for buzz in amputees. Buzz coding strategy enabled five amputees to discriminate contact of individual fingers with an overall accuracy of 77.85%. SIGNIFICANCE The consistency in perceptual qualities of dominant sensations can be exploited for coding multi-modality sensory feedback. A fast protocol of sensory coding is possible for fitting ETS-based, non-invasive sensory feedback to amputees.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 404 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| | - Manzhao Hao
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 401 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| | - Fei Yang
- Shanghai Jiao Tong University, Room 404 South Building Med-X, No. 1954 Rd. Huashan, Xuhui, Shanghai, Shanghai, 200030, CHINA
| | - Wenyuan Liang
- National Research Center for Rehabilitation Technical Aids, No.1 Rong Hua Zhong Road, Beijing Economic and Technological Development Area, Beijing, Beijing, 100176, CHINA
| | - Aiping Sun
- National Research Center for Rehabilitation Technical Aids, No.1 Rong Hua Zhong Road, Beijing Economic and Technological Development Area, Beijing, Beijing, 100176, CHINA
| | - Chi-Hong Chou
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 401 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| | - Ning Lan
- Laboratory of Neurorehabilitaiton Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Room 405 South Building Med-X, No.1954 Rd. Huashan, Shanghai, Shanghai, 200030, CHINA
| |
Collapse
|
10
|
Jabban L, Dupan S, Zhang D, Ainsworth B, Nazarpour K, Metcalfe BW. Sensory Feedback for Upper-Limb Prostheses: Opportunities and Barriers. IEEE Trans Neural Syst Rehabil Eng 2022; 30:738-747. [PMID: 35290188 DOI: 10.1109/tnsre.2022.3159186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The addition of sensory feedback to upper-limb prostheses has been shown to improve control, increase embodiment, and reduce phantom limb pain. However, most commercial prostheses do not incorporate sensory feedback due to several factors. This paper focuses on the major challenges of a lack of deep understanding of user needs, the unavailability of tailored, realistic outcome measures and the segregation between research on control and sensory feedback. The use of methods such as the Person-Based Approach and co-creation can improve the design and testing process. Stronger collaboration between researchers can integrate different prostheses research areas to accelerate the translation process.
Collapse
|
11
|
Gonzalez MA, Lee C, Kang J, Gillespie RB, Gates DH. Getting a Grip on the Impact of Incidental Feedback From Body-Powered and Myoelectric Prostheses. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1905-1912. [PMID: 34516377 DOI: 10.1109/tnsre.2021.3111741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sensory feedback from body-powered and myoelectric prostheses are limited, but in different ways. Currently, there are no empirical studies on how incidental feedback differs between body-powered and myoelectric prostheses, or how these differences impact grasping. Thus, the purpose of this study was to quantify differences in grasping performance between body-powered and myoelectric prosthesis users when presented with different forms of feedback. Nine adults with upper limb loss and nine without (acting as controls) completed two tasks in a virtual environment. In the first task, participants used visual, vibration, or force feedback to assist in matching target grasp apertures. In the second task, participants used either visual or force feedback to identify the stiffness of a virtual object. Participants using either prosthesis type improved their accuracy and reduced their variability compared to the no feedback condition when provided with any form of feedback (p < 0.001). However, participants using body-powered prostheses were significantly more accurate and less variable at matching grasp apertures than those using myoelectric prostheses across all feedback conditions. When identifying stiffness, body-powered prosthesis users were more accurate using force feedback (64% compared to myoelectric users' 39%) while myoelectric users were more accurate using visual feedback (65% compared to body-powered users' 53%). This study supports previous findings that body-powered prosthesis users receive limited force and proprioceptive feedback, while myoelectric prosthesis users receive almost no force or proprioceptive feedback from their device. This work can inform future supplemental feedback that enhances rather than reproduces existing incidental feedback.
Collapse
|
12
|
Garenfeld MA, Jorgovanovic N, Ilic V, Strbac M, Isakovic M, Dideriksen JL, Dosen S. A compact system for simultaneous stimulation and recording for closed-loop myoelectric control. J Neuroeng Rehabil 2021; 18:87. [PMID: 34034762 PMCID: PMC8146235 DOI: 10.1186/s12984-021-00877-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
Background Despite important advancements in control and mechatronics of myoelectric prostheses, the communication between the user and his/her bionic limb is still unidirectional, as these systems do not provide somatosensory feedback. Electrotactile stimulation is an attractive technology to close the control loop since it allows flexible modulation of multiple parameters and compact interface design via multi-pad electrodes. However, the stimulation interferes with the recording of myoelectric signals and this can be detrimental to control. Methods We present a novel compact solution for simultaneous recording and stimulation through dynamic blanking of stimulation artefacts. To test the system, a feedback coding scheme communicating wrist rotation and hand aperture was developed specifically to stress the myoelectric control while still providing meaningful information to the subjects. Ten subjects participated in an experiment, where the quality of closed-loop myoelectric control was assessed by controlling a cursor in a two degrees of freedom target-reaching task. The benchmark performance with visual feedback was compared to that achieved by combining visual feedback and electrotactile stimulation as well as by using electrotactile feedback only. Results There was no significant difference in performance between visual and combined feedback condition with regards to successfully reached targets, time to reach a target, path efficiency and the number of overshoots. Therefore, the quality of myoelectric control was preserved in spite of the stimulation. As expected, the tactile condition was significantly poorer in completion rate (100/4% and 78/25% for combined and tactile condition, respectively) and time to reach a target (9/2 s and 13/4 s for combined and tactile condition, respectively). However, the performance in the tactile condition was still good, with no significant difference in path efficiency (38/8%) and the number of overshoots (0.5/0.4 overshoots), indicating that the stimulation was meaningful for the subjects and useful for closed-loop control. Conclusions Overall, the results demonstrated that the developed system can provide robust closed-loop control using electrotactile stimulation. The system supports different encoding schemes and allows placing the recording and stimulation electrodes next to each other. This is an important step towards an integrated solution where the developed unit will be embedded into a prosthetic socket.
Collapse
Affiliation(s)
- Martin A Garenfeld
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7D, 9220, Aalborg Ø, Denmark.
| | - Nikola Jorgovanovic
- Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000, Novi Sad, Serbia
| | - Vojin Ilic
- Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000, Novi Sad, Serbia
| | - Matija Strbac
- Tecnalia Serbia Ltd., Deligradska 9/39, 11000, Belgrade, Serbia
| | - Milica Isakovic
- Tecnalia Serbia Ltd., Deligradska 9/39, 11000, Belgrade, Serbia
| | - Jakob L Dideriksen
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7D, 9220, Aalborg Ø, Denmark
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7D, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
13
|
Electrotactile Feedback for the Discrimination of Different Surface Textures Using a Microphone. SENSORS 2021; 21:s21103384. [PMID: 34066279 PMCID: PMC8152043 DOI: 10.3390/s21103384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022]
Abstract
Most commercial prosthetic hands lack closed-loop feedback, thus, a lot of research has been focusing on implementing sensory feedback systems to provide the user with sensory information during activities of daily living. This study evaluates the possibilities of using a microphone and electrotactile feedback to identify different textures. A condenser microphone was used as a sensor to detect the friction sound generated from the contact between different textures and the microphone. The generated signal was processed to provide a characteristic electrical stimulation presented to the participants. The main goal of the processing was to derive a continuous and intuitive transfer function between the microphone signal and stimulation frequency. Twelve able-bodied volunteers participated in the study, in which they were asked to identify the stroked texture (among four used in this study: Felt, sponge, silicone rubber, and string mesh) using only electrotactile feedback. The experiments were done in three phases: (1) Training, (2) with-feedback, (3) without-feedback. Each texture was stroked 20 times each during all three phases. The results show that the participants were able to differentiate between different textures, with a median accuracy of 85%, by using only electrotactile feedback with the stimulation frequency being the only variable parameter.
Collapse
|
14
|
Visual-Electrotactile Stimulation Feedback to Improve Immersive Brain-Computer Interface Based on Hand Motor Imagery. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021. [DOI: 10.1155/2021/8832686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the aging society, the number of people suffering from vascular disorders is rapidly increasing and has become a social problem. The death rate due to stroke, which is the second leading cause of global mortality, has increased by 40% in the last two decades. Stroke can also cause paralysis. Of late, brain-computer interfaces (BCIs) have been garnering attention in the rehabilitation field as assistive technology. A BCI for the motor rehabilitation of patients with paralysis promotes neural plasticity, when subjects perform motor imagery (MI). Feedback, such as visual and proprioceptive, influences brain rhythm modulation to contribute to MI learning and motor function restoration. Also, virtual reality (VR) can provide powerful graphical options to enhance feedback visualization. This work aimed to improve immersive VR-BCI based on hand MI, using visual-electrotactile stimulation feedback instead of visual feedback. The MI tasks include grasping, flexion/extension, and their random combination. Moreover, the subjects answered a system perception questionnaire after the experiments. The proposed system was evaluated with twenty able-bodied subjects. Visual-electrotactile feedback improved the mean classification accuracy for the grasping (93.00%
3.50%) and flexion/extension (95.00%
5.27%) MI tasks. Additionally, the subjects achieved an acceptable mean classification accuracy (maximum of 86.5%
5.80%) for the random MI task, which required more concentration. The proprioceptive feedback maintained lower mean power spectral density in all channels and higher attention levels than those of visual feedback during the test trials for the grasping and flexion/extension MI tasks. Also, this feedback generated greater relative power in the
-band for the premotor cortex, which indicated better MI preparation. Thus, electrotactile stimulation along with visual feedback enhanced the immersive VR-BCI classification accuracy by 5.5% and 4.5% for the grasping and flexion/extension MI tasks, respectively, retained the subject’s attention, and eased MI better than visual feedback alone.
Collapse
|
15
|
Garenfeld MA, Mortensen CK, Strbac M, Dideriksen JL, Dosen S. Amplitude versus spatially modulated electrotactile feedback for myoelectric control of two degrees of freedom. J Neural Eng 2020; 17:046034. [PMID: 32650320 DOI: 10.1088/1741-2552/aba4fd] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Artificial proprioceptive feedback from a myoelectric prosthesis is an important aspect in enhancing embodiment and user satisfaction, possibly lowering the demand for visual attention while controlling a prosthesis in everyday tasks. Contemporary myoelectric prostheses are advanced mechatronic systems with multiple degrees of freedom, and therefore, to communicate the prosthesis state, the feedback interface needs to transmit several variables simultaneously. In the present study, two different configurations for conveying proprioceptive information of wrist rotation and hand aperture through multichannel electrotactile stimulation were developed and evaluated during online myoelectric control. APPROACH Myoelectric recordings were acquired from the dominant forearm and electrotactile stimulation was delivered on the non-dominant forearm using a compact interface. The first feedback configuration, which was based on spatial coding, transmitted the information using a moving tactile stimulus, whereas the second, amplitude-based configuration conveyed the position via sensation intensity. Thirteen able-bodied subjects used pattern classification-based myoelectric control with both feedback configurations to accomplish a target-reaching task. MAIN RESULTS High task performance (completion rate > 90%) was observed for both configurations, with no significant difference in completion rate, time to reach the target, distance error and path efficiency, respectively. SIGNIFICANCE Overall, the results demonstrated that both feedback configurations allowed subjects to perceive and interpret two feedback variables delivered simultaneously, despite using a compact stimulation interface. This is an encouraging result for the prospect of communicating the full state of a multifunctional hand prosthesis.
Collapse
Affiliation(s)
- Martin A Garenfeld
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7D, 9220, Aalborg Ø, Denmark
| | | | | | | | | |
Collapse
|
16
|
Hao M, Chou CH, Zhang J, Yang F, Cao C, Yin P, Liang W, Niu CM, Lan N. Restoring Finger-Specific Sensory Feedback for Transradial Amputees via Non-Invasive Evoked Tactile Sensation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:98-107. [PMID: 35402945 PMCID: PMC8979634 DOI: 10.1109/ojemb.2020.2981566] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 12/04/2022] Open
Abstract
Objective: This study assessed the feasibility to restore finger-specific sensory feedback in transradial amputees with electrical stimulation of evoked tactile sensation (ETS). Methods: Here we investigated primary somatosensory cortical (SI) responses of ETS using Magnetoencephalography. Results: SI activations revealed a causal correlation with peripheral stimulation of projected finger regions on the stump skin. Peak latency was accountable to neural transmission from periphery to SI. Peak intensity of SI response was proportional to the strength of peripheral stimulation, manifesting a direct neural pathway from skin receptors to SI neurons. Active regions in SI at the amputated side were consistent to the finger/hand map of homunculus, forming a mirror imaging to that of the contralateral hand. With sensory feedback, amputees can recognize a pressure at prosthetic fingers as that at the homonymous lost fingers. Conclusions: Results confirmed that the direct neural pathway from periphery to SI allows effective communication of finger-specific sensory information to these amputees.
Collapse
Affiliation(s)
- Manzhao Hao
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Chih-Hong Chou
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Jie Zhang
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Fei Yang
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Chunyan Cao
- Department of Functional NeurosurgeryRuijin Hospital, School of MedicineShanghai Jiao Tong University Shanghai 200025 China
| | - Pengyu Yin
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Wenyuan Liang
- National Research Center for Rehabilitation Technical Aids Beijing 100176 China
| | - Chuanxin M Niu
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
- Department of Rehabilitation MedicineRuijin Hospital, School of MedicineShanghai Jiao Tong University Shanghai 200025 China
| | - Ning Lan
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| |
Collapse
|
17
|
Dong J, Geng B, Niazi IK, Amjad I, Dosen S, Jensen W, Kamavuako EN. The Variability of Psychophysical Parameters Following Surface and Subdermal Stimulation: A Multiday Study in Amputees. IEEE Trans Neural Syst Rehabil Eng 2019; 28:174-180. [PMID: 31796411 DOI: 10.1109/tnsre.2019.2956836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrotactile stimulation has been suggested as a modality for providing sensory feedback in upper limb prostheses. This study investigates the multiday variability of subdermal and surface stimulation. Electrical stimulation was delivered using either surface or fine wire electrodes placed right under the skin in eight amputees for seven consecutive days. The variability of psychophysical measurements, including detection threshold (DT), pain threshold (PT), dynamic range (DR), just noticeable difference (JND), Weber fraction (WF) and quality of evoked sensations, was evaluated using the coefficient of variation (CoV). In addition, the systematic change in the mean of the parameters across days was assessed in both stimulation modalities. In the case of DT, PT, DR, and perceived intensity at 100 Hz, the CoV of surface stimulation was significantly smaller than that of subdermal stimulation. Only PT showed a significant systematic change in the mean value across days for both modalities. The outcome of this study has implications for the choice of modality in delivering sensory feedback, though the significance of the quantified variability needs to be evaluated using usability tests with user feedback.
Collapse
|
18
|
Gonzalez-Rodriguez A, Ramon JL, Morell V, Garcia GJ, Pomares J, Jara CA, Ubeda A. Evaluation of Optimal Vibrotactile Feedback for Force-Controlled Upper Limb Myoelectric Prostheses. SENSORS 2019; 19:s19235209. [PMID: 31795067 PMCID: PMC6928933 DOI: 10.3390/s19235209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
The main goal of this study is to evaluate how to optimally select the best vibrotactile pattern to be used in a closed loop control of upper limb myoelectric prostheses as a feedback of the exerted force. To that end, we assessed both the selection of actuation patterns and the effects of the selection of frequency and amplitude parameters to discriminate between different feedback levels. A single vibrotactile actuator has been used to deliver the vibrations to subjects participating in the experiments. The results show no difference between pattern shapes in terms of feedback perception. Similarly, changes in amplitude level do not reflect significant improvement compared to changes in frequency. However, decreasing the number of feedback levels increases the accuracy of feedback perception and subject-specific variations are high for particular participants, showing that a fine-tuning of the parameters is necessary in a real-time application to upper limb prosthetics. In future works, the effects of training, location, and number of actuators will be assessed. This optimized selection will be tested in a real-time proportional myocontrol of a prosthetic hand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andres Ubeda
- Correspondence: ; Tel.: +34-965-903-400 (ext. 1094)
| |
Collapse
|
19
|
Abd MA, Gonzalez I, Ades C, Nojoumian M, Engeberg ED. Simulated robotic device malfunctions resembling malicious cyberattacks impact human perception of trust, satisfaction, and frustration. INT J ADV ROBOT SYST 2019. [DOI: 10.1177/1729881419874962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Robot assistants and wearable devices are highly useful; however, these artificial systems are susceptible to hackers. In this article, two sets of experiments were conducted. The first part of this study simulated a malicious attack on a prosthetic arm system to adversely affect the operation of the prosthetic system, while the perception of 10 human subjects was surveyed. These 10 able-bodied subjects controlled the prosthetic arm and hand with electromyogram signals, while an artificial sensation of touch was conveyed to their arms as they operated the system, which enabled them to feel what the prosthetic hand was grasping as they were asked to transport an object from one location to another. This haptic feedback was provided in both the normal and abnormal operational modes but was disabled in the extremely abnormal mode. The electromyogram control signals for the arm were reversed in both the abnormal and extremely abnormal modes. Results from the simulated malicious attack on a prosthetic arm system showed that the subjects found the haptic feedback helpful in both the normal and abnormal modes of operation. Both the abnormal and extremely abnormal modes of operation negatively impacted the self-reported levels of trust, satisfaction, and frustration with the prosthetic system as the subjects grasped and transported an object. While these metrics were negatively impacted by system malfunctions resembling a malicious attack on the control functionality, it was possible to rebuild them to their former higher levels after the functionality of the prosthetic system was restored. A parallel study in this article involved simulating a malicious attack on a robot assistant to unfavorably affect the delivery operation modes, while the perception of 20 human subjects was surveyed. Results showed that the simulated malfunctions unfavorably impacted the perception of trust, satisfaction, and frustration, but it was possible to restore these metrics in two different ways as the device functionality was restored.
Collapse
Affiliation(s)
- Moaed A Abd
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Iker Gonzalez
- Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Craig Ades
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Mehrdad Nojoumian
- Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Erik D Engeberg
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
- Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
20
|
Optimization of Semiautomated Calibration Algorithm of Multichannel Electrotactile Feedback for Myoelectric Hand Prosthesis. Appl Bionics Biomech 2019; 2019:9298758. [PMID: 31001360 PMCID: PMC6437744 DOI: 10.1155/2019/9298758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/10/2019] [Indexed: 01/03/2023] Open
Abstract
The main drawback of the commercially available myoelectric hand prostheses is the absence of somatosensory feedback. We recently developed a feedback interface for multiple degrees of freedom myoelectric prosthesis that allows proprioceptive and sensory information (i.e., grasping force) to be transmitted to the wearer instantaneously. High information bandwidth is achieved through intelligent control of spatiotemporal distribution of electrical pulses over a custom-designed electrode array. As electrotactile sensations are location-dependent and the developed interface requires that electrical stimuli are perceived to be of the same intensity on all locations, a calibration procedure is of high importance. The aim of this study was to gain more insight into the calibration procedure and optimize this process by leveraging a priori knowledge. For this purpose, we conducted a study with 9 able-bodied subjects performing 10 sessions of the array electrode calibration. Based on the collected data, we optimized and simplified the calibration procedure by adapting the initial (baseline) amplitude values in the calibration algorithm. The results suggest there is an individual pattern of stimulation amplitudes across 16 electrode pads for each subject, which is not affected by the initial amplitudes. Moreover, the number of user actions performed and the time needed for the calibration procedure are significantly reduced by the proposed methodology.
Collapse
|
21
|
Abstract
This paper compiles and analyzes some of the most current works related to upper limb prosthesis with emphasis on man-machine interfaces. A brief introduction of the basic subjects is given to explain what a prosthesis is, what types of prostheses exist, what they serve for, how they communicate with the user (control and feedback), and what technologies are involved. The method used in this review is also discussed, as well as the cataloging process and analysis of articles for the composition of this review. Each article is analyzed individually and its results are presented in a succinct way, in order to facilitate future research and serve as a source for professionals related to the area of prosthesis, such as doctors, engineers, researchers, and anyone interested in this subject. Finally, the needs and difficulties of the current prostheses, as well as the negative and positive points in the results are analyzed, and the progress achieved so far is discussed.
Collapse
|
22
|
Stephens-Fripp B, Sencadas V, Mutlu R, Alici G. Reusable Flexible Concentric Electrodes Coated With a Conductive Graphene Ink for Electrotactile Stimulation. Front Bioeng Biotechnol 2018; 6:179. [PMID: 30560123 PMCID: PMC6286993 DOI: 10.3389/fbioe.2018.00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/07/2018] [Indexed: 11/13/2022] Open
Abstract
Electrotactile stimulation is a highly promising technique for providing sensory feedback information for prosthetics. To this aim, disposable electrodes which are predominantly used result in a high environmental and financial cost when used over a long period of time. In addition, disposable electrodes are limited in their size and configurations. This paper presents an alternative approach based on a 3D printed reusable flexible concentric electrode coated with a conductive graphene ink. Here, we have characterized the electrode and demonstrated its effective performance in electrotactile stimulation and sensory feedback for robotic prosthetic hands.
Collapse
Affiliation(s)
- Benjamin Stephens-Fripp
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia.,ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, Australia
| | - Vitor Sencadas
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia.,ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, Australia
| | - Rahim Mutlu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia.,ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, Australia
| | - Gursel Alici
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia.,ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
23
|
Ghafoor U, Kim S, Hong KS. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review. Front Neurorobot 2017; 11:59. [PMID: 29163122 PMCID: PMC5671609 DOI: 10.3389/fnbot.2017.00059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/17/2017] [Indexed: 11/22/2022] Open
Abstract
For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques.
Collapse
Affiliation(s)
- Usman Ghafoor
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
24
|
Strbac M, Isakovic M, Belic M, Popovic I, Simanic I, Farina D, Keller T, Dosen S. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2133-2145. [PMID: 28600254 DOI: 10.1109/tnsre.2017.2712287] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.
Collapse
|
25
|
Coste CA, Mayr W, Bijak M, Musarò A, Carraro U. FES in Europe and Beyond: Current Translational Research. Eur J Transl Myol 2016; 26:6369. [PMID: 28078074 PMCID: PMC5220221 DOI: 10.4081/ejtm.2016.6369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Capacity of adult neural and muscle tissues to respond to external Electrical Stimulation (ES) is the biological basis for the development and implementation of mobility impairment physiotherapy protocols and of related assistive technologies, e.g, Functional Electrical Stimulation (FES). All body tissues, however, respond to electrical stimulation and, indeed, the most successful application of FES is electrical stimulation of the heart to revert or limit effects of arrhythmias (Pace-makers and Defibrillators). Here, we list and discuss results of FES current research activities, in particular those presented at 2016 Meetings: the PaduaMuscleDays, the Italian Institute of Myology Meeting, the 20th International Functional Electrical Stimulation Society (IFESS) conference held in Montpellier and the Vienna Workshop on FES. Several papers were recently e-published in the European Journal of Translational Myology as reports of meeting presentations. All the events and publications clearly show that FES research in Europe and beyond is alive and promisses translation of results into clinical management of a very large population of persons with deficiencies.
Collapse
Affiliation(s)
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering / Medical University of Vienna , Austria
| | - Manfred Bijak
- Center for Medical Physics and Biomedical Engineering / Medical University of Vienna , Austria
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti; DAHFMO-Unit of Histology and Medical Embryology, IIM; Sapienza University of Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Ugo Carraro
- IRCCS Fondazione Ospedale San Camillo , Venice, Italy
| |
Collapse
|