1
|
Olczak A. Importance of core stability for coordinated movement of the human body in stroke rehabilitation. Neurol Res 2022; 44:7-13. [PMID: 35040753 DOI: 10.1080/01616412.2021.1950952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To examine the effect of core stability on parameters of coordinated movement of the trunk and lower extremities in post-stroke rehabilitation. METHODS A total of 55 subjects (mean age, 58 years) were included in the study: 33 patients after stroke (17 with ischemic cerebral stroke and 16 with cerebellar) and 22 neurologically healthy subjects with lower back pain. Participation was voluntary. All subjects were asked to complete two exercises: a dynamic movement in the seated position (leaning forward and back) and a march-in-place exercise with a high elevation of the knees. The two exercises were performed with and without contraction of the abdominal muscles. The frontal and sagittal inclination of the trunk during movement, gait speed, elevation of the feet, and muscle tension was recorded. Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT04886466. RESULTS Core stability (abdominal contraction) was associated with more precise trunk movement in the frontal and sagittal plane, as well as higher elevation of the feet and a faster gait. This occurred in both post-stroke patients and neurologically healthy subjects with lower back pain. DISCUSSION Muscle tensions were generally lower in post-stroke patients compared to those with lower back pain syndrome but active abdominal tension muscles caused the increase of core stability and alter the trunk movement path, and improves gait and range of movement. Core stability training during stroke rehabilitation may help patients to achieve a higher level of coordinated movement.
Collapse
Affiliation(s)
- Anna Olczak
- Rehabilitation Clinic, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
2
|
Arash Haghpanah S, Farrokhnia M, Taghvaei S, Eghtesad M, Ghavanloo E. Tracking ankle joint movements during gait cycle via control of functional electrical stimulation. Proc Inst Mech Eng H 2021; 236:239-247. [PMID: 34632878 DOI: 10.1177/09544119211052365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Functional electrical stimulation (FES) is an effective method to induce muscle contraction and to improve movements in individuals with injured central nervous system. In order to develop the FES systems for an individual with gait impairment, an appropriate control strategy must be designed to accurate tracking performance. The goal of this study is to present a method for designing proportional-derivative (PD) and sliding mode controllers (SMC) for the FES applied to the musculoskeletal model of an ankle joint to track the desired movements obtained by experiments on two healthy individuals during the gait cycle. Simulation results of the developed controller on musculoskeletal model of the ankle joint illustrated that the SMC is able to track the desired movements more accurately than the PD controller and prevents oscillating patterns around the experimentally measured data. Therefore, the sliding mode as the nonlinear method is more robust in face to unmodeled dynamics and model errors and track the desired path smoothly. Also, the required control effort is smoother in SMC with respect to the PD controller because of the nonlinearity.
Collapse
Affiliation(s)
- Seyyed Arash Haghpanah
- Department of Solid Mechanics Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Morteza Farrokhnia
- Department of Solid Mechanics Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Sajjad Taghvaei
- Department of Solid Mechanics Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Eghtesad
- Department of Solid Mechanics Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Esmaeal Ghavanloo
- Department of Solid Mechanics Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Physical Activity during the Retirement Transition of Men and Women: A Qualitative Longitudinal Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2720885. [PMID: 34504896 PMCID: PMC8423544 DOI: 10.1155/2021/2720885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
The retirement transition is a major life change affecting people's lifestyles and behaviors, including those in relation to physical activity (PA), which is a key component of active ageing. Previous research analyzing the effect of retirement on PA levels has shown mixed results, and few studies investigated this issue in a gender perspective, thus, highlighting a need of knowledge in this respect. Aims of this study focused on the experience of PA during the retirement transition were to understand typologies of PA and possible changes in these typologies, to identify behavioural types relative to PA practice and levels, and to distinguish the main drivers and barriers for practicing PA associated with the different behavioural types. A further goal of the study was to investigate the abovementioned aims considering differences between women and men. Analyses were carried out within a three-year qualitative longitudinal study (2014-2016), which explored the individual experience of PA during the transition from work to retirement of 24 women and 16 men in Italy, with interviews carried out one year before and one and two years after retirement. Results show that preferred PA for both women and men was walking, along the transition to retirement. Over time, several participants replaced physically demanding activities with lighter ones. Six behavioural types were identified, describing individuals who incremented, started, or maintained the same level of PA, people who decreased PA levels or stopped it, and individuals who had a fluctuant behavior towards PA, or who had never practiced it. In general, poor health represented the main barrier to PA. For men, the main driver to PA was its effects on body shape, while for women, socialization/networking. In order to stimulate a more effective promotion of PA during the retirement transition, policy implications were discussed in light of the results obtained.
Collapse
|
4
|
Schaefer LV, Dech S, Aehle M, Bittmann FN. Disgusting odours affect the characteristics of the Adaptive Force in contrast to neutral and pleasant odours. Sci Rep 2021; 11:16410. [PMID: 34385522 PMCID: PMC8361115 DOI: 10.1038/s41598-021-95759-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
The olfactomotor system is especially investigated by examining the sniffing in reaction to olfactory stimuli. The motor output of respiratory-independent muscles was seldomly considered regarding possible influences of smells. The Adaptive Force (AF) characterizes the capability of the neuromuscular system to adapt to external forces in a holding manner and was suggested to be more vulnerable to possible interfering stimuli due to the underlying complex control processes. The aim of this pilot study was to measure the effects of olfactory inputs on the AF of the hip and elbow flexors, respectively. The AF of 10 subjects was examined manually by experienced testers while smelling at sniffing sticks with neutral, pleasant or disgusting odours. The reaction force and the limb position were recorded by a handheld device. The results show, inter alia, a significantly lower maximal isometric AF and a significantly higher AF at the onset of oscillations by perceiving disgusting odours compared to pleasant or neutral odours (p < 0.001). The adaptive holding capacity seems to reflect the functionality of the neuromuscular control, which can be impaired by disgusting olfactory inputs. An undisturbed functioning neuromuscular system appears to be characterized by a proper length tension control and by an earlier onset of mutual oscillations during an external force increase. This highlights the strong connection of olfaction and motor control also regarding respiratory-independent muscles.
Collapse
Affiliation(s)
- Laura V Schaefer
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Silas Dech
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Markus Aehle
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Frank N Bittmann
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Schaefer LV, Dech S, Bittmann FN. Adaptive Force and emotionally related imaginations - preliminary results suggest a reduction of the maximal holding capacity as reaction to disgusting food imagination. Heliyon 2021; 7:e07827. [PMID: 34485726 PMCID: PMC8391030 DOI: 10.1016/j.heliyon.2021.e07827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
The link between emotions and motor control has been discussed for years. The measurement of the Adaptive Force (AF) provides the possibility to get insights into the adaptive control of the neuromuscular system in reaction to external forces. It was hypothesized that the holding isometric AF is especially vulnerable to disturbing inputs. Here, the behavior of the AF under the influence of positive (tasty) vs. negative (disgusting) food imaginations was investigated. The AF was examined in n = 12 cases using an objectified manual muscle test of the hip flexors, elbow flexors or pectoralis major muscle, performed by one of two experienced testers while the participants imagined their most tasty or most disgusting food. The reaction force and the limb position were measured by a handheld device. While the slope of force rises and the maximal AF did not differ significantly between tasty and disgusting imaginations (p > 0.05), the maximal isometric AF was significantly lower and the AF at the onset of oscillations was significantly higher under disgusting vs. tasty imaginations (both p = 0.001). A proper length tension control of muscles seems to be a crucial functional parameter of the neuromuscular system which can be impaired instantaneously by emotionally related negative imaginations. This might be a potential approach to evaluate somatic reactions to emotions.
Collapse
Affiliation(s)
- Laura V. Schaefer
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University Potsdam, Germany
| | - Silas Dech
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University Potsdam, Germany
| | - Frank N. Bittmann
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University Potsdam, Germany
| |
Collapse
|
6
|
Recenti M, Ricciardi C, Edmunds K, Jacob D, Gambacorta M, Gargiulo P. Testing soft tissue radiodensity parameters interplay with age and self-reported physical activity. Eur J Transl Myol 2021; 31. [PMID: 34251162 PMCID: PMC8495362 DOI: 10.4081/ejtm.2021.9929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Aging well is directly associated to a healthy lifestyle. The focus of this paper is to relate individual wellness with medical image features. Non-linear trimodal regression analysis (NTRA) is a novel method that models the radiodensitometric distributions of x-ray computed tomography (CT) cross-sections. It generates 11 patient-specific parameters that describe the quality and quantity of muscle, fat, and connective tissues. In this research, the relationship of these 11 NTRA parameters with age, physical activity, and lifestyle is investigated in the 3,157 elderly volunteers AGES-I dataset. First, univariate statistical analyses were performed, and subjects were grouped by age and self-reported past (youth–midlife) and present (within 12 months of the survey) physical activity to ascertain which parameters were the most influential. Then, machine learning (ML) analyses were conducted to classify patients using NTRA parameters as input features for three ML algorithms. ML is also used to classify a Lifestyle index using the age groups. This classification analysis yielded robust results with the lifestyle index underlying the relevant differences of the soft tissues between age groups, especially in fat and connective tissue. Univariate statistical models suggested that NTRA parameters may be susceptible to age and differences between past and present physical activity levels. Moreover, for both age and physical activity, lean muscle parameters expressed more significant variation than fat and connective tissues.
Collapse
Affiliation(s)
- Marco Recenti
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík.
| | - Carlo Ricciardi
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland; Department of Electrical Engineering and Information Technology, University of Naples 'Federico II', Naples.
| | - Kyle Edmunds
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík.
| | - Deborah Jacob
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík.
| | | | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland; Department of Science, Landspítali, Reykjavík.
| |
Collapse
|
7
|
Recenti M, Ricciardi C, Edmunds KJ, Gislason MK, Sigurdsson S, Carraro U, Gargiulo P. Healthy Aging Within an Image: Using Muscle Radiodensitometry and Lifestyle Factors to Predict Diabetes and Hypertension. IEEE J Biomed Health Inform 2021; 25:2103-2112. [PMID: 33306475 DOI: 10.1109/jbhi.2020.3044158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The strong age dependency of many deleterious health outcomes likely reflects the cumulative effects from a variety of risk and protective factors that occur over one's life course. This notion has become increasingly explored in the etiology of chronic disease and associated comorbidities in aging. Our recent work has shown the robust classification of individuals at risk for cardiovascular pathophysiology using CT-based soft tissue radiodensity parameters obtained from nonlinear trimodal regression analysis (NTRA). Past and present lifestyle influences the incidence of comorbidities like hypertension (HTN), diabetes (DM) and cardiac diseases. 2,943 elderly subjects from the AGES-Reykjavik study were sorted into a three-level binary-tree structure defined by: 1) lifestyle factors (smoking and self-reported physical activity level), 2) comorbid HTN or DM, and 3) cardiac pathophysiology. NTRA parameters were extracted from mid-thigh CT cross-sections to quantify radiodensitometric changes in three tissue types: lean muscle, fat, and loose-connective tissue. Between-group differences were assessed at each binary-tree level, which were then used in tree-based machine learning (ML) models to classify subjects with DM or HTN. Classification scores for detecting HTN or DM based on lifestyle factors were excellent (AUCROC: 0.978 and 0.990, respectively). Finally, tissue importance analysis underlined the comparatively-high significance of connective tissue parameters in ML classification, while predictive models of DM onset from five-year longitudinal data gave a classification accuracy of 94.9%. Altogether, this work serves as an important milestone toward the construction of predictive tools for assessing the impact of lifestyle factors and healthy aging based on a single image.
Collapse
|
8
|
Dech S, Bittmann FN, Schaefer LV. Assessment of the Adaptive Force of Elbow Extensors in Healthy Subjects Quantified by a Novel Pneumatically Driven Measurement System with Considerations of Its Quality Criteria. Diagnostics (Basel) 2021; 11:diagnostics11060923. [PMID: 34063869 PMCID: PMC8224031 DOI: 10.3390/diagnostics11060923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31–1.98 Nm (0.61%–5.47%, p = 0.175–0.552), the standard errors of measurements (SEM) were 1.29–5.68 Nm (2.53%–15.70%) and the ICCs(3,1) = 0.896–0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85–0.98). The M and Max of AFisomax were significantly lower (6.12–14.93 Nm; p ≤ 0.001–0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.
Collapse
|
9
|
Bittmann FN, Dech S, Aehle M, Schaefer LV. Manual Muscle Testing-Force Profiles and Their Reproducibility. Diagnostics (Basel) 2020; 10:E996. [PMID: 33255648 PMCID: PMC7759939 DOI: 10.3390/diagnostics10120996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a "break test" depends on the tester's force rise and the patient's ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers' force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient's reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given.
Collapse
Affiliation(s)
| | | | | | - Laura V. Schaefer
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany; (F.N.B.); (S.D.); (M.A.)
| |
Collapse
|
10
|
Šarabon N, Kozinc Ž. Effects of Resistance Exercise on Balance Ability: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Life (Basel) 2020; 10:E284. [PMID: 33203156 PMCID: PMC7697352 DOI: 10.3390/life10110284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 01/28/2023] Open
Abstract
With this systematic review, we explored whether resistance exercise (RE) could be used to improve balance in addition to muscular strength and power. Scientific databases were searched for randomized controlled trials that investigated the effects of RE on the performance of various balance tests. Studies were considered if they involved healthy participants of any age group. Thirteen studies were included in the meta-analysis. The results showed moderate to large improvements in balance ability following RE in older adults, as reflected in functional reach test (mean difference (MD): +4.22 cm, p < 0.001), single-leg standing test (MD: +1.9-37.6 s, p < 0.001) and timed-up-and-go test (MD: -0.55 s; p = 0.002). Moderate to large improvements following RE were seen in adults in star excursion balance test (MD: +4.09-5.17 cm; p = 0.001-0.020), but not for Y-balance test score (MD: +4.94%, p = 0.14). The results implicate that RE interventions may significantly improve balance ability in adults and older adults. Therefore, RE could be used to improve balance in these populations, while further studies are needed to investigate children populations. Performing RE alone could be a time-efficient compromise for individuals who are unwilling or unable to perform large volumes of exercise or different exercise modalities.
Collapse
Affiliation(s)
- Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia;
- Laboratory for Motor Control and Motor Behavior, S2P, Science to Practice, Ltd., 1000 Ljubljana, Slovenia
- InnoRenew CoE, 6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, 6000 Koper, Slovenia
| | - Žiga Kozinc
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia;
- Andrej Marušič Institute, University of Primorska, 6000 Koper, Slovenia
| |
Collapse
|
11
|
Ricciardi C, Jónsson H, Jacob D, Improta G, Recenti M, Gíslason MK, Cesarelli G, Esposito L, Minutolo V, Bifulco P, Gargiulo P. Improving Prosthetic Selection and Predicting BMD from Biometric Measurements in Patients Receiving Total Hip Arthroplasty. Diagnostics (Basel) 2020; 10:diagnostics10100815. [PMID: 33066350 PMCID: PMC7602076 DOI: 10.3390/diagnostics10100815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
There are two surgical approaches to performing total hip arthroplasty (THA): a cemented or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic surgeon and on parameters such as the age and gender of the patient. Using machine learning (ML) techniques on quantitative biomechanical and bone quality data extracted from computed tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process. The second aim was to evaluate patient long-term outcomes by predicting the bone mineral density (BMD) of the proximal and distal parts of the femur using advanced image processing analysis techniques and ML. The ML analyses were performed on diagnostic patient data extracted from a national database of 51 THA patients using the Knime analytics platform. The classification analysis achieved 93% accuracy in choosing the type of prosthesis; the regression analysis on the BMD data showed a coefficient of determination of about 0.6. The start and stop of the electromyographic signals were identified as the best predictors. This study shows a patient-specific approach could be helpful in the decision-making process and provide clinicians with information regarding the follow up of patients.
Collapse
Affiliation(s)
- Carlo Ricciardi
- Department of Advanced Biomedical Sciences, University Hospital of Naples ‘Federico II’, 80131 Naples, Italy
- Institute for Biomedical and Neural Engineering, Reykjavík University, 102 Reykjavík, Iceland; (D.J.); (M.R.); (M.K.G.); (P.G.)
- Correspondence:
| | - Halldór Jónsson
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland;
- Landspítali Hospital, Orthopaedic Clinic, 102 Reykjavík, Iceland
| | - Deborah Jacob
- Institute for Biomedical and Neural Engineering, Reykjavík University, 102 Reykjavík, Iceland; (D.J.); (M.R.); (M.K.G.); (P.G.)
| | - Giovanni Improta
- Department of Public Health, University Hospital of Naples ‘Federico II’, 80125 Naples, Italy;
| | - Marco Recenti
- Institute for Biomedical and Neural Engineering, Reykjavík University, 102 Reykjavík, Iceland; (D.J.); (M.R.); (M.K.G.); (P.G.)
| | - Magnús Kjartan Gíslason
- Institute for Biomedical and Neural Engineering, Reykjavík University, 102 Reykjavík, Iceland; (D.J.); (M.R.); (M.K.G.); (P.G.)
| | - Giuseppe Cesarelli
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, 80125 Naples, Italy;
- Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Luca Esposito
- Department Engineering, University of Campania Luigi Vanvitelli, 81100 Aversa (CE), Italy; (L.E.); (V.M.)
| | - Vincenzo Minutolo
- Department Engineering, University of Campania Luigi Vanvitelli, 81100 Aversa (CE), Italy; (L.E.); (V.M.)
| | - Paolo Bifulco
- Department of Electrical Engineering and Information Technologies, University Hospital of Naples ‘Federico II’, 80125 Naples, Italy;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 102 Reykjavík, Iceland; (D.J.); (M.R.); (M.K.G.); (P.G.)
- Department of Science, Landspítali Hospital, 102 Reykjavík, Iceland
| |
Collapse
|
12
|
Resistance Exercise, Electrical Muscle Stimulation, and Whole-Body Vibration in Older Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2020; 9:jcm9092902. [PMID: 32911822 PMCID: PMC7563530 DOI: 10.3390/jcm9092902] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
It has been shown that resistance exercise (RT) is one of the most effective approaches to counteract the physical and functional changes associated with aging. This systematic review with meta-analysis compared the effects of RT, whole-body vibration (WBV), and electrical muscle stimulation (EMS) on muscle strength, body composition, and functional performance in older adults. A thorough literature review was conducted, and the analyses were limited to randomized controlled trials. In total, 63 studies were included in the meta-analysis (48 RT, 11 WBV, and 4 EMS). The results showed that RT and WBV are comparably effective for improving muscle strength, while the effects of EMS remains debated. RT interventions also improved some outcome measures related to functional performance, as well as the cross-sectional area of the quadriceps. Muscle mass was not significantly affected by RT. A limitation of the review is the smaller number of WBV and particularly EMS studies. For this reason, the effects of WBV and EMS could not be comprehensively compared to the effect of RT for all outcome measures. For the moment, RT or combinations of RT and WBV or EMS, is probably the most reliable way to improve muscle strength and functional performance, while the best approach to increase muscle mass in older adults remains open to further studies.
Collapse
|
13
|
Güler Ö, Aras D, Akça F, Bianco A, Lavanco G, Paoli A, Şahin FN. Effects of Aerobic and Anaerobic Fatigue Exercises on Postural Control and Recovery Time in Female Soccer Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176273. [PMID: 32872251 PMCID: PMC7503876 DOI: 10.3390/ijerph17176273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Sixteen female soccer players (age = 20.19 ± 1.52 years; body mass = 56.52 ± 4.95 kg; body height = 164.81 ± 4.21 cm) with no history of lower extremity injury participated in the study. The Biodex SD Balance system was used to determine the non-dominant single-leg stability. In anaerobic exercise, each subject performed four maximal cycling efforts against a resistance equivalent to 0.075 kg/body mass for 30 s with three-minute rest intervals. In aerobic exercise, subjects performed the Bruce protocol on a motorized treadmill. After each exercise, subjects subsequently performed a single-leg stability test and then repeated the same test for four times with five-minute passive rest periods. In accordance with the results, it was found that the impairment observed right after the aerobic loading was higher (p < 0.001) compared to the anaerobic one. However, the time-related deterioration in both aerobic and anaerobic loadings was similar. The B-pre value was lower than Bpost and B5 (p < 0.01) and B10 (p < 0.05) in both conditions. Subjects could reach the initial balance level at B15 after aerobic and anaerobic loadings. The lactate level did not reach resting value even after 20 min of both fatigue protocols. Although the fatigue after aerobic and aerobic exercise negatively affects a single-leg dynamic balance level, single leg balance ability returns to the baseline status after 10 min of passive recovery duration.
Collapse
Affiliation(s)
- Özkan Güler
- Faculty of Sports Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (Ö.G.); (D.A.); (F.A.); (F.N.Ş.)
| | - Dicle Aras
- Faculty of Sports Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (Ö.G.); (D.A.); (F.A.); (F.N.Ş.)
| | - Fırat Akça
- Faculty of Sports Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (Ö.G.); (D.A.); (F.A.); (F.N.Ş.)
| | - Antonino Bianco
- Department of Psychological, Pedagogical, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
- Correspondence: ; Tel.: +39-091-23896910
| | - Gioacchino Lavanco
- Department of Psychological, Pedagogical, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Antonio Paoli
- Department of Biomedical Science, University of Padova, 35122 Padova, Italy;
| | - Fatma Neşe Şahin
- Faculty of Sports Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (Ö.G.); (D.A.); (F.A.); (F.N.Ş.)
| |
Collapse
|
14
|
Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics (Basel) 2020; 10:diagnostics10080529. [PMID: 32751308 PMCID: PMC7460102 DOI: 10.3390/diagnostics10080529] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) produces muscle wasting that is especially severe after complete and permanent damage of lower motor neurons, as can occur in complete conus and cauda equina syndrome. Even in this worst-case scenario, mass and function of permanently denervated quadriceps muscle can be rescued by surface functional electrical stimulation using a purpose designed home-based rehabilitation strategy. Early diagnostics is a key factor in the long-term success of this management. Function of quadriceps muscle was quantitated by force measurements. Muscle gross cross-sections were evaluated by quantitative color computed tomography (CT) and muscle and skin biopsies by quantitative histology, electron microscopy, and immunohistochemistry. Two years of treatment that started earlier than 5 years from SCI produced: (a) an increase in cross-sectional area of stimulated muscles; (b) an increase in muscle fiber mean diameter; (c) improvements in ultrastructural organization; and (d) increased force output during electrical stimulation. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that new trials start soon, providing patients the benefits they need.
Collapse
|