1
|
Yang Y, Cao Y, Zhu C, Jin Y, Sun H, Wang R, Li M, Zhang Z. Functional activities of three Rehmannia glutinosa enzymes: Elucidation of the Rehmannia glutinosa salidroside biosynthesis pathway in Saccharomyces cerevisiae. Gene 2024; 928:148815. [PMID: 39097208 DOI: 10.1016/j.gene.2024.148815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Rehmannia glutinosa produces many phenylethanoid glycoside (PhG) compounds, including salidroside, which not only possesses various biological activities but also is a core precursor of some medicinal PhGs, so it is very important to elucidate the species' salidroside biosynthesis pathway to enhance the production of salidroside and its derivations. Although some plant copper-containing amine oxidases (CuAOs), phenylacetaldehyde reductases (PARs) and UDP-glucose glucosyltransferases (UGTs) are thought to be vital catalytic enzymes involved in the downstream salidroside biosynthesis pathways, to date, none of these proteins or the associated genes in R. glutinosa have been characterized. To verify a postulated R. glutinosa salidroside biosynthetic pathway starting from tyrosine, this study identified and characterized a set of R. glutinosa genes encoding RgCuAO, RgPAR and RgUGT enzymes for salidroside biosynthesis. The functional activities of these proteins were tested in vitro by heterologous expression of these genes in Escherichia coli, confirming these catalytic abilities in these corresponding reaction steps of the biosynthetic pathway. Importantly, four enzyme-encoding genes (including the previously reported RgTyDC2 encoding tyrosine decarboxylase and the RgCuAO1, RgPAR1 and RgUGT2 genes) were cointegrated into Saccharomyces cerevisiae to reconstitute the R. glutinosa salidroside biosynthetic pathway, achieving an engineered strain that produced salidroside and validating these enzymes' catalytic functions. This study elucidates the complete R. glutinosa salidroside biosynthesis pathway from tyrosine metabolism in S. cerevisiae, establishing a basic platform for the efficient production of salidroside and its derivatives.
Collapse
Affiliation(s)
- Yanhui Yang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China.
| | - Yiming Cao
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Changrui Zhu
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Yan Jin
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Huiwen Sun
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Rong Wang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
2
|
Yang YH, Song HW, Lai JY, Li RF, Wang ZC, Jia HC, Yang Y. A Rehmannia glutinosa caffeic acid O-methyltransferase functional identification: Reconstitution of the ferulic acid biosynthetic pathway in Saccharomyces cerevisiae using Rehmannia glutinosa enzymes. Biotechnol J 2023; 18:e2300064. [PMID: 37522376 DOI: 10.1002/biot.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Rehmannia glutinosa produces many pharmacological natural components, including ferulic acid (FA) which is also an important precursor of some medicinal ingredients, so it is very significant to explore FA biosynthesis for enhancing the production of FA and its derivations. This study aimed to determine and reconstitute the R. glutinosa FA biosynthetic pathway from phenylalanine (Phe) metabolism in Saccharomyces cerevisiae as a safe host for the biosynthesis of plant-derived products. Although plant caffeic acid O-methyltransferases (COMTs) are thought to be a vital catalytic enzyme in FA biosynthesis pathways, to date, none of the RgCOMTs in R. glutinosa has been characterized. This study identified an RgCOMT and revealed its protein enzymatic activity for FA production in vitro. The RgCOMT overexpression in R. glutinosa significantly increased FA yield, suggesting that its molecular function is involved in FA biosynthesis. Heterologous expression of the RgCOMT and reported R. glutinosa genes, RgPAL2 (encoding phenylalanine ammonia-lyase [PAL] protein), RgC4H (cinnamate 4-hydroxylase [C4H]), and RgC3H (p-coumarate-3-hydroxylase [C3H]), in S. cerevisiae confirmed their catalytic abilities in the reaction steps for the FA biosynthesis. Importantly, in this study, these genes were introduced into S. cerevisiae and coexpressed to reconstitute the R. glutinosa FA biosynthetic pathway from Phe metabolism, thus obtaining an engineered strain that produced an FA titer of 148.34 mg L-1 . This study identified the functional activity of RgCOMT and clarified the R. glutinosa FA biosynthesis pathway in S. cerevisiae, paving the way for the efficient production of FA and its derivatives.
Collapse
Affiliation(s)
- Yan Hui Yang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Hao Wei Song
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Jun Yi Lai
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Rui Fang Li
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Zi Chao Wang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Hui Cong Jia
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Yong Yang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| |
Collapse
|