1
|
Ghahramani A, Naghadian Moghaddam MM, Kianparsa J, Ahmadi MH. Overall status of carbapenem resistance among clinical isolates of Acinetobacter baumannii: a systematic review and meta-analysis. J Antimicrob Chemother 2024; 79:3264-3280. [PMID: 39392464 DOI: 10.1093/jac/dkae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Resistance to carbapenems, the first-line treatment for infections caused by Acinetobacter baumannii, is increasing throughout the world. The aim of the present study was to determine the global status of resistance to carbapenems in clinical isolates of this pathogen, worldwide. METHODS Electronic databases were searched using the appropriate keywords, including: 'Acinetobacter' 'baumannii', 'Acinetobacter baumannii' and 'A. baumannii', 'resistance', 'antibiotic resistance', 'antibiotic susceptibility', 'antimicrobial resistance', 'antimicrobial susceptibility', 'carbapenem', 'carbapenems', 'imipenem', 'meropenem' and 'doripenem'. Finally, following some exclusions, 177 studies from various countries were included in this study. The data were then subjected to a meta-analysis. RESULTS The average resistance rate of A. baumannii to imipenem, meropenem and doripenem was 44.7%, 59.4% and 72.7%, respectively. A high level of heterogeneity (I2 > 50%, P value < 0.05) was detected in the studies representing resistance to imipenem, meropenem and doripenem in A. baumannii isolates. Begg's and Egger's tests did not indicate publication bias (P value > 0.05). CONCLUSIONS The findings of the current study indicate that the overall resistance to carbapenems in clinical isolates of A. baumannii is relatively high and prevalent throughout the world. Moreover, time trend analysis showed that the resistance has increased from the year 2000 to 2023. This emphasizes the importance of conducting routine antimicrobial susceptibility testing before selecting a course of treatment, as well as monitoring and controlling antibiotic resistance patterns in A. baumannii strains, and seeking novel treatment options to lessen the emergence and spread of resistant strains and to reduce the treatment failure.
Collapse
Affiliation(s)
- Ali Ghahramani
- Student Research Committee, School of Medicine, Shahed University, Tehran, Iran
| | | | - Joben Kianparsa
- Student Research Committee, School of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
2
|
Mthombeni TC, Burger JR, Lubbe MS, Julyan M, Lekalakala-Mokaba MR. ESKAPE pathogen incidence and antibiotic resistance in patients with bloodstream infections at a referral hospital in Limpopo, South Africa, 2014-2019: A cross-sectional study. Afr J Lab Med 2024; 13:2519. [PMID: 39649114 PMCID: PMC11621878 DOI: 10.4102/ajlm.v13i1.2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/01/2024] [Indexed: 12/10/2024] Open
Abstract
Background There is a paucity of research on the incidence and antimicrobial resistance (AMR) of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens in Africa because of the inadequate establishment of AMR surveillance systems. Objective This study reports on the incidence and AMR of bloodstream ESKAPE pathogens at a referral hospital in northern South Africa. Methods This retrospective descriptive study used routinely collected bloodstream isolates (pathogen identification and antimicrobial susceptibility testing performed using automated systems) from the South African National Health Laboratory Service, from January 2014 to December 2019. Resistant phenotypes analysed included methicillin-resistant S. aureus and carbapenem-resistant A. baumannii. Results The ESKAPE pathogen incidence rate was stable from 2014 to 2019 (p = 0.133). The most isolated pathogens were S. aureus (268/746; 35.9%) and A. baumannii (200/746; 26.8%). Staphylococcus aureus increased from 39 isolates in 2014 to 75 in 2019 (p = 0.132). The incidence rate of A. baumannii increased from 11.9% (16/134) in 2015 to 37.8% (68/180) in 2019 (p = 0.009). Most isolates (417/746; 55.9%) were from the neonatal ward. Carbapenem-resistant A. baumannii increased from 68.8% (11/16) in 2014 to 75.0% (51/68) in 2019 (p = 0.009). Methicillin-resistant S. aureus decreased from 56.0% (14/25) in 2016 to 17.3% (13/75) in 2019 (p = 0.260). Conclusion Routine data provide essential information on the incidence of ESKAPE pathogens and AMR phenotypes, serving as a basis for an antibiogram, a surveillance tool in antibiotic stewardship programmes. What this study adds The study provided local information on the incidence and AMR pattern of ESKAPE pathogens, which is essential when developing empiric treatment protocols for appropriate antibiotic prescribing and infection prevention and control practices.
Collapse
Affiliation(s)
- Tiyani C Mthombeni
- Department of Medicine Usage in South Africa (MUSA), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Johanita R Burger
- Department of Medicine Usage in South Africa (MUSA), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Martha S Lubbe
- Department of Medicine Usage in South Africa (MUSA), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marlene Julyan
- Department of Medicine Usage in South Africa (MUSA), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Molebogeng R Lekalakala-Mokaba
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
- Polokwane Laboratory, National Health Laboratory Service, Polokwane, South Africa
| |
Collapse
|
3
|
Sebola DC, Oguttu JW, Kock MM, Qekwana DN. Antimicrobial resistance patterns of Acinetobacter baumannii and Klebsiella pneumoniae isolated from dogs presented at a veterinary academic hospital in South Africa. Vet World 2023; 16:1880-1888. [PMID: 37859969 PMCID: PMC10583888 DOI: 10.14202/vetworld.2023.1880-1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Background Acinetobacter baumannii and Klebsiella pneumoniae are opportunistic bacterial pathogens responsible for hospital-acquired infections in veterinary medicine. Infection with these bacteria always requires urgent antimicrobial therapy. However, there is no evidence of studies that have investigated the antimicrobial drug resistance profile of these organisms in a veterinary setting in South Africa. This study investigated the antimicrobial resistance (AMR) patterns of A. baumannii and K. pneumoniae from clinical specimens obtained from dogs presented at a veterinary academic hospital. The findings of this study contribute to an improved understanding of the AMR profile of these bacteria in veterinary medicine. Materials and Methods Retrospective data of clinical samples from dogs that were positive for A. baumannii and K. pneumoniae between 2007 and 2013 were used in this study. The antimicrobial susceptibility of the isolates was determined using the disk diffusion method following the Clinical and Laboratory Standards Institute guidelines. The A. baumannii isolates were subjected to a panel of 20 antibiotics, while K. pneumoniae isolates were subjected to a panel of 22 antibiotics. Data were analyzed using descriptive statistics and presented using tables and figures. Results Twenty (n = 20) A. baumannii isolates were isolated from bronchoalveolar lavage, foreign objects, bone, urine, skin, blood, ear, nasal, and oral cavity. Almost all A. baumannii (95%, 19/20) isolates were resistant to at least one antibiotic, and 60% (12/20) were multidrug-resistant (MDR). Klebsiella pneumoniae (n = 56) was isolated from urine, foreign objects, abscesses, ears, eyes, tracheal aspirations, bronchoalveolar lavages, eyes, abdominal aspirates, anal glands, bones, and intestinal and lung biopsies. All K. pneumoniae (100%, 56/56) isolates were resistant to at least one antibiotic, and 98% (55/56) were MDR. Conclusion Both A. baumannii and K. pneumoniae were isolated in various clinical tissue samples and exhibited a high prevalence of resistance to multiple antibiotics. In addition, these bacteria exhibited a high prevalence of resistance to β-lactam compared to other classes of antibiotics, which is likely to impact treatment options and patient prognosis.
Collapse
Affiliation(s)
- Dikeledi C. Sebola
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - James W. Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Daniel N. Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Al-Sulami AI, Basha MT, AlGhamdi HA, S. Albalawi S, M. Al-Zaydi K, Said MA. Synthesis of Silver(I) Complexes Containing 3-Oxo-3-phenyl-2-(2-phenylhydrazono)propanal-Based Ligands as a Multifunction Platform for Antimicrobial and Optoelectronic Applications. ACS OMEGA 2023; 8:23633-23642. [PMID: 37426249 PMCID: PMC10324052 DOI: 10.1021/acsomega.3c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023]
Abstract
Toward multifunctionality, including antimicrobial and optoelectronic applications, herein, we reported the synthesis of a novel Ag(I) complex with 3-oxo-3-phenyl-2-(2-phenylhydrazono)propanal-based ligands including 3-(4-chlorophenyl)-2-[2-(4-nitrophenyl)hydrazono]-3-oxopropanal (named as "4A"), 3-(4-chlorophenyl)-2-[2-(4-methylphenyl)hydrazono]-3-oxopropanal (named as "6A"), and 3-(4-chlorophenyl)-3-oxo-2-(2-phenylhydrazono)propanal (named as "9A"). The synthesized compounds were characterized through FTIR, 1H NMR, and density functional theory (DFT). The morphological features and thermal stability were evaluated through transmission electron microscopy (TEM) and TG/DTA analysis. The antimicrobial activity of the synthesized Ag complexes was tested against various pathogens, including Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia), Gram-positive bacteria (Staphylococcus aureus and Streptococcus mutans), and fungi (Candida albicans and Aspergillus niger). Results show that the synthesized complexes (Ag(4A), Ag(6A), and Ag(9A)) possess promising antimicrobial efficacy against various pathogens and are in good competition with several standard drugs as well. On the other hand, the optoelectronic features such as absorbance, band gap, and Urbach energy were examined by measuring the absorbance using a UV-vis spectrophotometer. The values of the band gap reflected the semiconducting nature of these complexes. The complexation with Ag resulted in a lowering band gap to match the apex of the solar spectrum. Such low band gap values are preferable for optoelectronic applications like dye-sensitized solar cells, photodiodes, and photocatalysis.
Collapse
Affiliation(s)
- Ahlam I. Al-Sulami
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Maram T. Basha
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Huda A. AlGhamdi
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Sarah S. Albalawi
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Khadijah M. Al-Zaydi
- College
of Science, Department of Chemistry, University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Musa A. Said
- Chemistry
Department, College of Science, Taibah University, PO Box 30002, Al-Madinah Al Munawara 1417, Saudi Arabia
| |
Collapse
|
5
|
Sebola DC, Oguttu JW, Kock MM, Qekwana DN. Hospital-acquired and zoonotic bacteria from a veterinary hospital and their associated antimicrobial-susceptibility profiles: A systematic review. Front Vet Sci 2023; 9:1087052. [PMID: 36699325 PMCID: PMC9868922 DOI: 10.3389/fvets.2022.1087052] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Hospital-acquired infections (HAIs) are associated with increased mortality, morbidity, and an economic burden due to costs associated with extended hospital stays. Furthermore, most pathogens associated with HAIs in veterinary medicine are zoonotic. This study used published data to identify organisms associated with HAIs and zoonosis in veterinary medicine. Furthermore, the study also investigated the antimicrobial-susceptibility profile of these bacterial organisms. Methods A systematic literature review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Search terms and five electronic databases were used to identify studies published over 20 years (2000-2020). The risk of bias was assessed using the "Strengthening the Reporting of Observational Studies in Epidemiology-Vet" (STROBE-Vet) checklist. Results Out of the identified 628 papers, 27 met the inclusion criteria for this study. Most studies (63%, 17/27) included were either from small animal or companion animal clinics/hospitals, while 5% (4/27) were from large animal clinics/hospitals inclusive of bovine and equine hospitals. Hospital-acquired bacteria were reported from environmental surfaces (33%, 9/27), animal clinical cases (29.6%, 8/27), and fomites such as cell phones, clippers, stethoscopes, and computers (14.8%, 4/27). Staphylococcus spp. was the most (63%; 17/27) reported organism, followed by Escherichia coli (19%; 5/27), Enterococcus spp. (15%, 4/27), Salmonella spp. (15%; 4/27), Acinetobacter baumannii (15%, 4/27), Clostridioides difficile (4%, 1/27), and Pseudomonas aeruginosa (4%; 1/27). Multidrug-resistant (MDR) organisms were reported in 71% (12/17) of studies linked to Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-resistant Staphylococcus pseudintermedius (MRSP), Enterococcus spp., Salmonella Typhimurium, A. baumannii, and E. coli. The mecA gene was identified in both MRSA and MRSP, the blaCMY-2 gene in E. coli and Salmonella spp., and the vanA gene in E. faecium isolate. Six studies reported organisms from animals with similar clonal lineage to those reported in human isolates. Conclusion Organisms associated with hospital-acquired infections and zoonosis have been reported from clinical cases, environmental surfaces, and items used during patient treatment and care. Staphylococcus species is the most reported organism in cases of HAIs and some isolates shared similar clonal lineage to those reported in humans. Some organisms associated with HAIs exhibit a high level of resistance and contain genes associated with antibiotic resistance.
Collapse
Affiliation(s)
- Dikeledi C. Sebola
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - James W. Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa,Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Daniel N. Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa,*Correspondence: Daniel N. Qekwana ✉
| |
Collapse
|
6
|
Extent and Resistance Patterns of ESKAPE Pathogens Isolated in Pus Swabs from Hospitalized Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3511306. [PMID: 36353409 PMCID: PMC9640227 DOI: 10.1155/2022/3511306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022]
Abstract
Antimicrobial resistance has persisted as a global threat with increasing associated numbers of morbidity and mortality. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) were termed by the Infectious Diseases Society of America as a group of bacteria with rapid antibiotic resistance development. The aim of the study was to describe the extent and resistance patterns of ESKAPE pathogens isolated in pus swabs from patients admitted at Muhimbili National Hospital, Tanzania. A retrospective cross-sectional study was performed in August 2019. A total of 75 admitted patients with open wounds and surgical site infections were recruited. Files were analyzed to collect microbiology laboratory data and relevant patient data. A total of 76 clinically significant bacteria were isolated of which 52 bacteria were categorized as ESKAPE pathogens. The most common bacteria isolated were 25% (n = 19/76) P. aeruginosa and 17.1% S. aureus. A high level of antibiotic resistance was shown in all ESKAPE and non-ESKAPE pathogens. The Gram-negative bacteria of ESKAPE pathogens were further analyzed comparing 3rd generation cephalosporin and carbapenems resistance patterns. A. baumannii showed the highest resistance towards 3rd generation cephalosporin and carbapenems. In addition, P. aeruginosa showed high resistance to 3rd generation cephalosporins with 89.5% resistance, with E. coli showing high resistance to carbapenems with 50.0% resistance. The burden of ESKAPE pathogens is high in pus swabs obtained from admitted patients at Muhimbili National Hospital. The results showed high antibiotic resistance within ESKAPE and non-ESKAPE pathogens including the "last resort" antibiotics: 3rd generation cephalosporin and carbapenems.
Collapse
|
7
|
Motiwala T, Mthethwa Q, Achilonu I, Khoza T. ESKAPE Pathogens: Looking at Clp ATPases as Potential Drug Targets. Antibiotics (Basel) 2022; 11:1218. [PMID: 36139999 PMCID: PMC9495089 DOI: 10.3390/antibiotics11091218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial antibiotic resistance is rapidly growing globally and poses a severe health threat as the number of multidrug resistant (MDR) and extensively drug-resistant (XDR) bacteria increases. The observed resistance is partially due to natural evolution and to a large extent is attributed to antibiotic misuse and overuse. As the rate of antibiotic resistance increases, it is crucial to develop new drugs to address the emergence of MDR and XDR pathogens. A variety of strategies are employed to address issues pertaining to bacterial antibiotic resistance and these strategies include: (1) the anti-virulence approach, which ultimately targets virulence factors instead of killing the bacterium, (2) employing antimicrobial peptides that target key proteins for bacterial survival and, (3) phage therapy, which uses bacteriophages to treat infectious diseases. In this review, we take a renewed look at a group of ESKAPE pathogens which are known to cause nosocomial infections and are able to escape the bactericidal actions of antibiotics by reducing the efficacy of several known antibiotics. We discuss previously observed escape mechanisms and new possible therapeutic measures to combat these pathogens and further suggest caseinolytic proteins (Clp) as possible therapeutic targets to combat ESKAPE pathogens. These proteins have displayed unmatched significance in bacterial growth, viability and virulence upon chronic infection and under stressful conditions. Furthermore, several studies have showed promising results with targeting Clp proteins in bacterial species, such as Mycobacterium tuberculosis, Staphylococcus aureus and Bacillus subtilis.
Collapse
Affiliation(s)
- Tehrim Motiwala
- Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal-Pietermaritzburg Campus, Scottsville 3209, South Africa
| | - Qiniso Mthethwa
- Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal-Pietermaritzburg Campus, Scottsville 3209, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Thandeka Khoza
- Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal-Pietermaritzburg Campus, Scottsville 3209, South Africa
| |
Collapse
|
8
|
Daya T, Jeje O, Maake R, Aloke C, Khoza T, Achilonu I. Expression, Purification, and Biophysical Characterization of Klebsiella Pneumoniae Nicotinate Nucleotide Adenylyltransferase. Protein J 2022; 41:141-156. [DOI: 10.1007/s10930-021-10037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
9
|
Orosz L, Lengyel G, Ánosi N, Lakatos L, Burián K. Changes in resistance pattern of ESKAPE pathogens between 2010 and 2020 in the clinical center of University of Szeged, Hungary. Acta Microbiol Immunol Hung 2022; 69:27-34. [PMID: 35084364 DOI: 10.1556/030.2022.01640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
The acronym ESKAPE stands for six antibiotic-resistant bacterial pathogens namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. Monitoring their resistance is an important task for clinical microbiology laboratories. Our aim was to analyze the resistance patterns of these bacteria over ten years in clinical samples of our department. We examined the sample types from which these pathogens were most frequently isolated. The incidence of tests with resistant results for each pathogen in aggregate and the most important subgroups of each was also analyzed. We have also intended to predict the local priorities amongst these pathogens. The results of 1,268,126 antibiotic susceptibility tests performed on a total of 70,099 isolates over this period were examined. Most strains were derived from urine, blood culture, trachea, vagina, wounds, and abscesses. Prevalence of ESKAPE bacteria increased between 2011 and 2020 however, the steepest intensifications were seen in the cases of K. pneumoniae and P. aeruginosa. The number of antibiotic susceptibility tests with resistant results has also increased over the decade but the most notable increase was detected in E. faecium and A. baumannii. Based on the calculation of antimicrobial resistance index for each pathogen, the most serious challenges for us at present are A. baumannii, P. aeruginosa, and E. faecium and their multi-resistant forms. The theoretical prediction of proportion of resistant tests between 2020 and 2030 in our care area draws attention to a worrying trend in the cases of vancomycin-resistant E. faecium and carbapenem-resistant A. baumannii strains.
Collapse
Affiliation(s)
- László Orosz
- 1 Department of Medical Microbiology, University of Szeged, Szeged, Hungary
| | - György Lengyel
- 2 Infection Control Department, Semmelweis University, Budapest Hungary
| | - Noel Ánosi
- 3 Faculty of Medicine, Semmelweis University, Budapest Hungary
| | - Lóránt Lakatos
- 4 Biological Research Center Szeged, Institute of Plant Biology, Photo- and Chronobiology Group Eötvös Loránd Research Network, Szeged, Hungary
- 5 Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- 1 Department of Medical Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Hailemariam M, Alemayehu T, Tadesse B, Nigussie N, Agegnehu A, Habtemariam T, Ali M, Mitiku E, Azerefegne E. Major bacterial isolate and antibiotic resistance from routine clinical samples in Southern Ethiopia. Sci Rep 2021; 11:19710. [PMID: 34611232 PMCID: PMC8492677 DOI: 10.1038/s41598-021-99272-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, antibiotic-resistant bacterial infections are a challenge for the health care system. Although physicians demand timely drug resistance data to guide empirical treatment, local data is rather scarce. Hence, this study performed a retrospective analysis of microbiological findings at the Hawassa public hospital. Secondary data were retrieved to assess the prevalence and level of drug resistance for the most common bacterial isolates from clinical samples processed at Hawassa University Comprehensive Specialized Hospital. Out of 1085 clinical samples processed in the microbiology laboratory, the prevalence of bacterial infection was 32.6%. Bacterial bloodstream infection was higher in children than in adults (OR, 4; 95% CI 1.8-14.6; p = 0.005). E. coli and K. pneumoniae were the commonest bacterial isolate both in children (36.8%, 26.3%) and in adults (33.3%, 26.7%) from the urine sample while, the leading bacteria identified from the CSF sample was P. aeruginosa, 37% in children and 43% in adult. In this study, all identified bacterial isolates were multi-drug resistant (MDR) ranging from 50 to 91%. The highest proportion of MDR was S. aureus 91.1 followed by K. pneumoniae 87.6%. Since the nationwide investigation of bacterial isolate, and drug resistance is rare in Ethiopia, a report from such type of local surveillance is highly useful to guide empirical therapy by providing awareness on the level resistance of isolates.
Collapse
Affiliation(s)
- Mengistu Hailemariam
- grid.192268.60000 0000 8953 2273School of Medical Laboratory Science, Hawassa University College of Medicine and Health Sciences, P.O. Box 1560, Hawassa, Ethiopia
| | - Tsegaye Alemayehu
- grid.192268.60000 0000 8953 2273School of Medical Laboratory Science, Hawassa University College of Medicine and Health Sciences, P.O. Box 1560, Hawassa, Ethiopia
| | - Bereket Tadesse
- grid.192268.60000 0000 8953 2273Hawassa University Comprehensive and Specialized Hospital, Hawassa, Ethiopia
| | - Netsanete Nigussie
- grid.192268.60000 0000 8953 2273Hawassa University Comprehensive and Specialized Hospital, Hawassa, Ethiopia
| | - Asnakech Agegnehu
- grid.192268.60000 0000 8953 2273Hawassa University Comprehensive and Specialized Hospital, Hawassa, Ethiopia
| | - Techilo Habtemariam
- grid.192268.60000 0000 8953 2273Hawassa University Comprehensive and Specialized Hospital, Hawassa, Ethiopia
| | - Mulubrhan Ali
- grid.192268.60000 0000 8953 2273School of Medical Laboratory Science, Hawassa University College of Medicine and Health Sciences, P.O. Box 1560, Hawassa, Ethiopia
| | - Enkosilassie Mitiku
- grid.192268.60000 0000 8953 2273Hawassa University Comprehensive and Specialized Hospital, Hawassa, Ethiopia
| | - Elshaday Azerefegne
- grid.192268.60000 0000 8953 2273Hawassa University Comprehensive and Specialized Hospital, Hawassa, Ethiopia
| |
Collapse
|
11
|
Antibiotic resistance and biofilm formation of Acinetobacter baumannii isolated from high-risk effluent water in tertiary hospitals in South Africa. J Glob Antimicrob Resist 2021; 27:82-90. [PMID: 34481121 DOI: 10.1016/j.jgar.2021.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Discharge of drug-resistant, biofilm-forming pathogens from hospital effluent water into municipal wastewater treatment plants poses a public health concern. This study examined the relationship between antibiotic resistance levels and biofilm formation of Acinetobacter baumannii strains isolated from hospital effluents. METHODS Antibiotic susceptibility of 71 A. baumannii isolates was evaluated by the Kirby-Bauer disk diffusion method. Minimum inhibitory concentrations (MICs) were determined by the agar dilution method, while the minimum biofilm eradication concentration (MBEC) was determined by the broth dilution method. Genotyping was performed for plasmid DNA. Biofilm formation was evaluated by the microtitre plate method and was quantified using crystal violet. A P-value of <0.05 was regarded as statistically significant in all tests. RESULTS Extensively drug-resistant (XDR) strains made up 58% of the isolates, while multidrug-resistant (MDR) and pandrug-resistant (PDR) strains made up 50% of the isolates from final effluent. The MBEC of ciprofloxacin increased by 255-fold, while that of ceftazidime was as high as 63-1310-fold compared with their respective MICs. Isolates were classified into four plasmid pattern groups with no association between biofilm formation and plasmid type (P = 0.0921). The degree of biofilm formation was independent of the level of antibiotic resistance, although MDR, XDR and PDR isolates produced significant biofilm biomass (P = 0.2580). CONCLUSION These results suggest that hospital effluent is a potential source of MDR biofilm-forming A. baumannii strains. Appropriate treatment and disposal of effluents are essential to prevent the presence of drug-resistant pathogens in wastewater.
Collapse
|
12
|
Overexpression of the adeB Efflux Pump Gene in Tigecycline-Resistant Acinetobacter baumannii Clinical Isolates and Its Inhibition by (+)Usnic Acid as an Adjuvant. Antibiotics (Basel) 2021; 10:antibiotics10091037. [PMID: 34572620 PMCID: PMC8472003 DOI: 10.3390/antibiotics10091037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter species are among the most life-threatening Gram-negative bacilli, causing hospital-acquired infections, and they are associated with high morbidity and mortality. They show multidrug resistance that acts via various mechanisms. In Acinetobacter baumannii, efflux pump-mediated resistance to many antimicrobial compounds, including tigecycline, has been widely reported. Natural compounds have been used for their various pharmacological properties, including anti-efflux pump activity. The present study aimed to evaluate the efflux pump-mediated resistance mechanism of Acinetobacter baumannii and the effect of (+)Usnic acid as an efflux pump inhibitor with tigecycline. For detecting the efflux pump activity of tigecycline-resistant Acinetobacter baumannii isolates, microbroth dilution method and real-time quantitative reverse transcription–polymerase chain reaction was used. (+)Usnic acid was added to tigecycline and tested by the checkerboard method to evaluate its efficacy as an efflux pump inhibitor. qRT-PCR analysis was carried out to show the downregulation of the efflux pump in the isolates. Out of 42 tigecycline-resistant Acinetobacter baumannii isolates, 19 showed efflux pump activity. All 19 strains expressed the adeB gene. (+)Usnic acid as an adjuvant showed better efficacy in lowering the minimum inhibitory concentration compared with the conventional efflux pump inhibitor, carbonyl cyanide phenylhydrazone.
Collapse
|
13
|
Hoorzook KB, Pieterse A, Heine L, Barnard TG, van Rensburg NJ. Soul of the Jukskei River: The Extent of Bacterial Contamination in the Jukskei River in Gauteng Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8537. [PMID: 34444286 PMCID: PMC8392637 DOI: 10.3390/ijerph18168537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023]
Abstract
River water quality is an important health issue as the water is utilised for drinking, domestic and agricultural use in developing countries. This study aimed to investigate the effect water from a major city has on the water quality of the Jukskei River that daylights in Johannesburg, South Africa. The river water samples were analysed for physio-chemical properties, microbiology, antibiotic resistance of bacterial isolates, genetic markers, and potentially toxic metals. Data analysis revealed increased electrical conductivity, total dissolved solids, and turbidity since 2010. Total Coliform and Escherichia coli detected were above the South African water quality guidelines for domestic, recreational, and irrigation purposes. Additionally, sodium, zinc, nickel, lithium, and lead exceeded the guidelines in domestic, recreational, and irrigation water. Pathogenic strains of E. coli (aEPEC, EHEC, EIEC, and EAEC) were isolated from the water. Various other potentially pathogenic organisms that have been implicated as causes of gastro-intestinal, and a wide range of other diseases, were also detected and demonstrated multiple levels of resistance to antibiotics tested. The results show that the river water is a potential health threat to downstream users. These results will feed into the environmental management action plan for Water for the Future (NGO group).
Collapse
Affiliation(s)
- Kousar Banu Hoorzook
- Process Energy Environment Technology Station (PEETS), Faculty of Engineering and Built Environment, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Anton Pieterse
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Lee Heine
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Nickey Janse van Rensburg
- Process Energy Environment Technology Station (PEETS), Faculty of Engineering and Built Environment, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
14
|
Jung H, Pitout JDD, Mitton BC, Strydom KA, Kingsburgh C, Coetzee J, Ehlers MM, Kock M. Evaluation of the rapid ResaPolymyxin Acinetobacter/ Pseudomonas NP test for rapid colistin resistance detection in lactose non-fermenting Gram-negative bacteria. J Med Microbiol 2021; 70. [PMID: 34165418 DOI: 10.1099/jmm.0.001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Colistin is one of the last-resort antibiotics for treating multidrug-resistant (MDR) or extensively drug-resistant (XDR) lactose non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii.Gap Statement. As the rate of colistin resistance is steadily rising, there is a need for rapid and accurate antimicrobial susceptibility testing methods for colistin. The Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test has recently been developed for rapid detection of colistin resistance in P. aeruginosa and A. baumannii.Aim. The present study aimed to evaluate the performance of the Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test in comparison with the reference broth microdilution (BMD) method.Methodology. The Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test was performed using a total of 135 P. aeruginosa (17 colistin-resistant and 118 colistin-susceptible) and 66 A. baumannii isolates (32 colistin-resistant and 34 colistin-susceptible), in comparison with the reference BMD method.Results. The categorical agreement of the Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test with the reference BMD method was 97.5 % with a major error rate of 0 % (0/152) and a very major error (VME) rate of 10.2 %. The VME rate was higher (23.5 %) when calculated separately for P. aeruginosa isolates. The overall sensitivity and specificity were 89.8 and 100 %, respectively.Conclusion. The Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test performed better for A. baumannii than for P. aeruginosa.
Collapse
Affiliation(s)
- Hyunsul Jung
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Johann D D Pitout
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Division of Microbiology, Alberta Public Laboratories, Cummings School of Medicine, University of Calgary, Calgary, Canada
| | - Barend C Mitton
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service (NHLS), Pretoria, South Africa
| | - Kathy-Anne Strydom
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Ampath National Reference Laboratory, Centurion, South Africa
| | | | | | - Marthie M Ehlers
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service (NHLS), Pretoria, South Africa
| | - Marleen Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service (NHLS), Pretoria, South Africa
| |
Collapse
|
15
|
Iskandar K, Molinier L, Hallit S, Sartelli M, Hardcastle TC, Haque M, Lugova H, Dhingra S, Sharma P, Islam S, Mohammed I, Naina Mohamed I, Hanna PA, Hajj SE, Jamaluddin NAH, Salameh P, Roques C. Surveillance of antimicrobial resistance in low- and middle-income countries: a scattered picture. Antimicrob Resist Infect Control 2021; 10:63. [PMID: 33789754 PMCID: PMC8011122 DOI: 10.1186/s13756-021-00931-w] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
Data on comprehensive population-based surveillance of antimicrobial resistance is lacking. In low- and middle-income countries, the challenges are high due to weak laboratory capacity, poor health systems governance, lack of health information systems, and limited resources. Developing countries struggle with political and social dilemma, and bear a high health and economic burden of communicable diseases. Available data are fragmented and lack representativeness which limits their use to advice health policy makers and orientate the efficient allocation of funding and financial resources on programs to mitigate resistance. Low-quality data means soaring rates of antimicrobial resistance and the inability to track and map the spread of resistance, detect early outbreaks, and set national health policy to tackle resistance. Here, we review the barriers and limitations of conducting effective antimicrobial resistance surveillance, and we highlight multiple incremental approaches that may offer opportunities to strengthen population-based surveillance if tailored to the context of each country.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1027, 31000, Toulouse, France.
- INSPECT-LB, Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut, 6573-14, Lebanon.
- Faculty of Pharmacy, Lebanese University, Mount Lebanon, Lebanon.
| | - Laurent Molinier
- Faculté de Médecine, Equipe constitutive du CERPOP, UMR1295, unité mixte INSERM, Université Paul Sabatier Toulouse III, 31000, Toulouse, France
| | - Souheil Hallit
- INSPECT-LB, Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut, 6573-14, Lebanon
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | - Massimo Sartelli
- Department of Surgery, University of Macerata, 62100, Macerata, Italy
| | - Timothy Craig Hardcastle
- Department of Trauma Service, Inkosi Albert Luthuli Central Hospital, Durban, 4091, South Africa
- Department of Surgery, Nelson Mandela School of Clinical Medicine, University of KwaZulu-Natal, Congela, 4041, Durban, South Africa
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, 57000, Malaysia
| | - Halyna Lugova
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Irfan Mohammed
- Department of Restorative Dentistry, Federal University of Pelotas School of Dentistry, Pelotas, RS, 96020-010, Brazil
| | - Isa Naina Mohamed
- Pharmacoepidemiology and Drug Safety Unit, Pharmacology Department, Medical Faculty, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Pierre Abi Hanna
- Faculty of Pharmacy, Lebanese University, Mount Lebanon, Lebanon
| | - Said El Hajj
- Department of Medicine, Lebanese University, Beirut, Lebanon
| | - Nurul Adilla Hayat Jamaluddin
- Pharmacoepidemiology and Drug Safety Unit, Pharmacology Department, Medical Faculty, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Pascale Salameh
- INSPECT-LB, Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut, 6573-14, Lebanon
- Department of Medicine, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Christine Roques
- Department of Bactériologie-Hygiène, Centre Hospitalier Universitaire, Hôpital Purpan, 31330, Toulouse, France
- Department of Bioprocédés et Systèmes Microbiens, Laboratoire de Génie Chimique, Université Paul Sabatier Toulouse III, UMR 5503, 31330, Toulouse, France
| |
Collapse
|
16
|
Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Rep 2021; 11:7110. [PMID: 33782509 PMCID: PMC8007629 DOI: 10.1038/s41598-021-86570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
The proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.
Collapse
Affiliation(s)
- Mojisola C Hosu
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University and National Health Laboratory Services, Mthatha, Eastern Cape, South Africa
| | - Sandeep D Vasaikar
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University and National Health Laboratory Services, Mthatha, Eastern Cape, South Africa
| | - Grace E Okuthe
- Department of Biological and Environmental Sciences, Walter Sisulu University, Mthatha, Eastern Cape, South Africa
| | - Teke Apalata
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University and National Health Laboratory Services, Mthatha, Eastern Cape, South Africa.
| |
Collapse
|
17
|
Methicillin resistant staphylococci isolated in clinical samples: a 3-year retrospective study analysis. Future Sci OA 2021; 7:FSO681. [PMID: 33815826 PMCID: PMC8015662 DOI: 10.2144/fsoa-2020-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim To determine the prevalence and describe the antimicrobial resistance patterns of circulating methicillin-resistant staphylococci (MRS) isolated from clinical specimens during a 3-year period in Yaoundé, Cameroon. Materials & methods From January 2017 to December 2019, 1683 clinical samples were plated onto Mannitol salt agar. Bacterial identification was performed followed by antibiotic susceptibility testing. Data were analyzed using R program. Results Staphylococci were identified in 90 (5.35%) of the 1683 clinical samples. Among these, 83.33% were MRS with 78.67% being methicillin-resistant Staphylococcus aureus (MRSA). The prevalence of MRS infection increased significantly with age. Conclusion The study offers a good baseline for surveillance intervention to contain antimicrobial resistance and highlights the need to strengthen antimicrobial stewardship and infection, prevention and control programs in the country.
Collapse
|
18
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
19
|
An Evaluation of the Antibacterial Properties of Tormentic Acid Congener and Extracts From Callistemon viminalis on Selected ESKAPE Pathogens and Effects on Biofilm Formation. Adv Pharmacol Pharm Sci 2020; 2020:8848606. [PMID: 33225299 PMCID: PMC7669338 DOI: 10.1155/2020/8848606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
ESKAPE pathogens, namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, are responsible for a majority of all healthcare-acquired infections (HAI). The bacteria cause nosocomial infections in immunocompromised patients. Extracts from Callistemon viminalis have been shown to have antibacterial, antifungal, and anti-inflammatory activities. Tormentic acid congener, a pentacyclic triterpene saponin, was isolated from C. viminalis leaves. This study aimed to investigate the antibacterial effects of tormentic acid congener and leaf extracts on biofilm formation by A. baumannii, S. aureus, S. pyogenes, and P. aeruginosa. The antibacterial effects were determined by the microbroth dilution method, and ciprofloxacin was used as the standard antibacterial drug. Biofilm formation and detachment assays were performed using crystal violet staining. Production of extracellular polymeric DNA and polysaccharides from biofilms was also determined. Tormentic acid congener showed time-dependent antibacterial activity against P. aeruginosa with a MIC of 100 µg/ml and caused significant protein leakage. Antibacterial activity was found when tormentic acid congener was tested against both S. aureus and P. aeruginosa. The MICs were found to be 25 µg/ml and 12.5 µg/ml for P. aeruginosa and S. aureus cells, respectively. S. pyogenes was found to be susceptible to tormentic acid congener and the hydroethanolic extract with an MIC of 100 µg/ml and 25 µg/ml, respectively. A. baumannii was found not to be susceptible to the compound or the extracts. The compound and the extracts caused a significant decrease in the biofilm extracellular polysaccharide content of S. pyogenes. The extracts and tormentic acid congener caused detachment of biofilms and decreased the release of extracellular DNA and capsular polysaccharides from biofilms of P. aeruginosa and S. aureus. Tormentic acid congener and extracts, thus, have significant antibacterial and antibiofilm activities on these selected ESKAPE bacteria and can act as source lead compounds for the development of antibacterial triterpenoids.
Collapse
|
20
|
Molale-Tom LG, Bezuidenhout CC. Prevalence, antibiotic resistance and virulence of Enterococcus spp. from wastewater treatment plant effluent and receiving waters in South Africa. JOURNAL OF WATER AND HEALTH 2020; 18:753-765. [PMID: 33095198 DOI: 10.2166/wh.2020.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poorly operating wastewater treatment plants (WWTPs) result in faecal pollution of receiving waters, posing a health risk to humans and animals. The aim of this study was to determine the antimicrobial resistance patterns and presence of virulent genes in Enterococcus spp. isolated from three WWTPs' final effluent and receiving waters in the North West Province, South Africa. Sixty-three Enterococcus spp. were identified and their antimicrobial susceptibility, as well as the presence of five virulence genes, determined. The antibiotic inhibition zone diameter data were subject to cluster analysis. Sixty-eight percent of the screened Enterococcus spp. were resistant to three or more antibiotics and harboured plasmids. Five virulence genes were detected and six multi-virulence profiles observed. Cluster analysis indicated groupings of isolates from all three effluent points downstream together, and between plants 1 and 2 together. The findings of this study have demonstrated that Enterococcus spp. harbouring virulence factors and plasmids that mediate multiple antibiotic resistance are present in effluent and receiving water systems that support various social needs. This is a cause for concern and it is recommended that Enterococcus be used as an additional faecal indicator when microbiological quality of water is assessed.
Collapse
Affiliation(s)
- L G Molale-Tom
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| | - C C Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| |
Collapse
|
21
|
Kennedy B, Shobo CO, Zishiri OT, Bester LA. Surveillance of Salmonella spp. in the environment of public hospitals in KwaZulu-Natal, South Africa. J Hosp Infect 2020; 105:205-212. [PMID: 32114055 DOI: 10.1016/j.jhin.2020.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
AIM To investigate the dissemination of Salmonella spp. within four levels of government hospitals in KwaZulu-Natal, South Africa. METHODS The identification of Salmonella spp. was performed by amplification of the invA gene. Isolates were subjected to antimicrobial susceptibility testing and molecular characterization of eight resistance genes (qnrA, qnrB, qnrS, tetA, tetB, tetC, tetG, ermB) and three virulence genes (sitC, spvA, spv). Genetic relatedness between isolates was determined using enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction. FINDINGS Ninety-four isolates were obtained. The largest source of isolates was the regional hospital. Paediatric wards had the highest prevalence of isolates. Nurses' tables contained the most isolates out of all sites sampled. Twenty-two clusters indicating diverse isolates were obtained via molecular typing. Four main ERIC types were identified, each unique to a specific hospital. A possibility of dissemination across the wards was noted as highly related isolates were present at various sites within the wards. Many of these sites were highly trafficked areas by healthcare staff. Ten multi-drug-resistant isolates were found. CONCLUSIONS This study suggests that infection prevention and control strategies that involve environmental cleaning and decontamination may not be enough, or adhered to sufficiently, to prevent the dissemination of Salmonella spp.
Collapse
Affiliation(s)
- B Kennedy
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C O Shobo
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O T Zishiri
- Genetics Department, School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - L A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
22
|
Xu Y, Niu H, Hu T, Zhang L, Su S, He H, Wang H, Zhang D. High Expression of Metallo-β-Lactamase Contributed to the Resistance to Carbapenem in Clinical Isolates of Pseudomonas aeruginosa from Baotou, China. Infect Drug Resist 2020; 13:35-43. [PMID: 32021318 PMCID: PMC6954094 DOI: 10.2147/idr.s233987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bacterial resistance to antibiotics has become a major public health concern. This study aimed to determine the resistance mechanisms to carbapenem in clinical isolates of Pseudomonas aeruginosa. Methods A total of 62 clinical isolates of carbapenem-resistant P. aeruginosa (CRPA) were collected from 2015 to 2017. Imipenem (IPM)–EDTA disk synergy test was used to screen strains that produced metallo-β-lactamase. In addition, the genes for outer membrane protein OprD2, metallo-β-lactamase and mexR gene were amplified and sequenced. Expression of mexA was detected by real-time PCR. Results Disk synergy test showed that 51.6% (32/62) of the strains were positive for metallo-β-lactamase. PCR showed that 84.4% of the strains were SIM-positive (27/32), 15.6% of the strains were IMP-positive (5/32), and 12.5% of the strains were VIM-positive (4/32). SPM-positive and GIM-positive strains were not detected. In addition, 5 of the 62 strains had small deletions and/or point mutations in OprD2. Three strains had a high expression of mexA, while eight strains were positive for the regulatory gene mexR with no mutations detected by DNA sequencing. Conclusion Expression of metallo-β-lactamase is the main resistance mechanism of P. aeruginosa to carbapenem. Mutations in OprD2 and/or the overexpression of efflux pump MexAB-OprM may contribute to P. aeruginosa resistance to carbapenem.
Collapse
Affiliation(s)
- Yanfeng Xu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Haiying Niu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Tongping Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Lixia Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Shanna Su
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Huijie He
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Huimin Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Dong Zhang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| |
Collapse
|
23
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
24
|
Marturano JE, Lowery TJ. ESKAPE Pathogens in Bloodstream Infections Are Associated With Higher Cost and Mortality but Can Be Predicted Using Diagnoses Upon Admission. Open Forum Infect Dis 2019; 6:ofz503. [PMID: 31844639 PMCID: PMC6902016 DOI: 10.1093/ofid/ofz503] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 11/15/2022] Open
Abstract
Background ESKAPE bacteria are thought to be especially resistant to antibiotics, and their resistance and prevalence in bloodstream infections are rising. Large studies are needed to better characterize the clinical impact of these bacteria and to develop algorithms that alert clinicians when patients are at high risk of an ESKAPE infection. Methods From a US data set of >1.1 M patient encounters, we evaluated if ESKAPE pathogens produced worse outcomes than non-ESKAPE pathogens and if an ESKAPE infection could be predicted using simple word group algorithms built from decision trees. Results We found that ESKAPE pathogens represented 42.2% of species isolated from bloodstream infections and, compared with non-ESKAPE pathogens, were associated with a 3.3-day increase in length of stay, a $5500 increase in cost of care, and a 2.1% absolute increase in mortality (P < 1e-99). ESKAPE pathogens were not universally more resistant to antibiotics, but only to select antibiotics (P < 5e-6), particularly against common empiric therapies. In addition, simple word group algorithms predicted ESKAPE pathogens with a positive predictive value of 7.9% to 56.2%, exceeding 4.8% by random guessing (P < 1e-99). Conclusions Taken together, these data highlight the pathogenicity of ESKAPE bacteria, potential mechanisms of their pathogenicity, and the potential to predict ESKAPE infections upon admission. Implementing word group algorithms could enable earlier and targeted therapies against ESKAPE bacteria and thus reduce their burden on the health care system.
Collapse
|
25
|
Isayenko OY, Knysh OV, Kotsar OV, Ryzhkova TN, Dyukareva GI. Evaluation of anti-microbial activity of filtrates of Lactobacillus rhamnosus and Saccharomyces boulardii against antibiotic-resistant gram-negative bacteria. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The article presents the results of the first study on the influence of biologically active substances Lactobacillus rhamnosus GG ATCC 53103 and Saccharomyces boulardii, obtained according to the author`s method, on growth of gram-negative bacteria with broad medical resistance: Pseudomonas aeruginosa PR, Klebsiella pneumoniae PR, Lelliottia amnigena (Enterobacter amnigenus) PR using the spectrophotometric method. Disintegrates of L. rhamnosus GG and S. boulardii were obtained using low-frequency ultrasound processing of suspension of probiotic strains, and metabolites – through cultivation of lactobacteria and saccharomycetes in disintegrates of probiotic microorganisms. To samples of test-cultures with studied filtrates of disintegrates or metabolites we added growth medium and cultivated them (period of monitoring was 5- and 24-hours). Results of the studies were expressed as the percentage of inhibition of increment in polyresistant gram-negative bacteria under the impact of biologically active substances of probiotic microorganisms. Five-hour incubation of test-strains with the studied samples of lactobacteria led to inhibition of their growth properties by 85.6–96.7%. Growth of bacteria under the impact of substances of saccharomycetes was inhibted by 45.1–92.5%. Twenty-four hour exposure of the test-cultures in filtrates of L. rhamnosus GG and S. boulardii caused 100% inhibition of P. aeruginosa and L. amnigena polyresistant strains. Temporal interval of cultivation directly proportionally affected the extent of inhibition of growth of microorganisms: we determined direct correlation dependence within 0.789–0.991. Maximum inhibition of increment of the studied pathogens was observed under the influence of metabolites of lactobacteria, obtained by cultivating primary producers in their disintegrate. We determined a high level of anti-microbial activity of metabolites from L. rhamnosus GG and S. boulardii obtained by cultivation of probiotics in disintegrates against bacteria resistant to a broad range of preparations, which allows us to consider these substances as promising for development of anti-microbial preparations of a new generation against etiologically significant antibiotic-resistant gram-negative microorganisms.
Collapse
|
26
|
Knysh OV, Isayenko OY, Voyda YV, Kizimenko OO, Babych YM. Influence of cell-free extracts of Bifidobacterium bifidum and Lactobacillus reuteri on proliferation and biofilm formation by Escherichia coli and Pseudomonas aeruginosa. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The development of new effective preparations for the correction of microecological disorders based on probiotic derivatives requires a comprehensive study of the biological activity of the latter. We studied the proliferative activity and biofilm formation by clinical isolates: Escherichia coli and Pseudomonas aeruginosa under the influence of cell-free extracts containing structural components and metabolites of the Bifidobacterium bifidum and Lactobacillus reuteri probiotic strains. Cell-free extracts were obtained from disintegrates and cultures of probiotics. Disintegrates were prepared by cyclic freezing-thawing of probiotic cell suspensions. The cultures were obtained by cultivating probiotic microorganisms in their own disintegrates. The obtained disintegrates and cultures were filtered. The proliferative activity of the test cultures was studied using the spectrophotometric microtiter plate method after an hour-long exposure in undiluted cell-free extracts and subsequent cultivation in a nutrient medium containing 30%vol of the studied extracts at 37 °C for 24 hours. The biofilm formation of the test cultures was studied with 30% vol content of cell-free extracts in the cultivation medium using the spectrophotometric microtiter plate method. All the studied extracts exerted a similar effect on the proliferative activity and biofilm formation by E. coli and P. aeruginosa. Exposure of the test cultures in all undiluted extracts during an hour led to a significant decrease in the optical density of the test samples: optical density of the test wells ranged from 36.5% to 49.8% of the control wells. The test cultures that were exposed to the extracts: filtrate of L. reuteri disintegrate (L), filtrate of В. bifidum disintegrate (B) and filtrate of В. bifidum culture, grown in В. bifidum disintegrate (MB) after dilution and subsequent cultivation over the next 24 hours completely restored the ability to proliferate. The proliferative activity of the test cultures that were exposed to the extracts: filtrate of L. reuteri culture, grown in L. reuteri disintegrate (ML) and filtrate of L. reuteri culture, grown in L. reuteri disintegrate supplemented with 0.8 M glycerol and 0.4 M glucose (MLG), was significantly inhibited after dilution and subsequent cultivation. The inhibition indices calculated for the ML extract were: 25.9% (E. coli) and 53.0% (P. aeruginosa). Inhibition indices calculated for the MLG extract were: 62.0% (E. coli) and 96.9% (P. aeruginosa). MLG extract had more pronounced inhibitory effect on the proliferation of the test cultures than ML extract. All the studied extracts exerted significant inhibitory effect on the biofilm formation of the test cultures. Analysis of the results of the study shows that cell-free extracts of L. reuteri culture grown in its disintegrate without supplementation or supplemented with glycerol and glucose have the highest antimicrobial activity and can be used as metabiotics to prevent overgrowth of potentially pathogenic bacteria, as well as inoculation and proliferation of pathogenic gram-negative bacteria in the gastrointestinal tract. They can be used alone or in combination with cellular probiotics to enhance their probiotic action. This study encourages further careful investigation of the biochemical composition of cell-free extracts and clarifying the mechanism of their action.
Collapse
|