1
|
Sirakov I, Strateva TV, Boyanov VS, Orozova P, Yordanov D, Rusenova N, Gergova R, Dimov SG, Sirakova B, Radosavljević V, Boyanova L, Mitov I. Identification, Characterization, and Epidemiological Analysis of Lactococcus garvieae Fish Isolates Obtained in a Period of Eighteen Years. Microorganisms 2025; 13:436. [PMID: 40005801 PMCID: PMC11858575 DOI: 10.3390/microorganisms13020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Lactococcosis caused by Lactococcus garvieae is a bacterial infection affecting fish with a considerable economic impact. Recently, L. garvieae has established itself as an opportunistic pathogen in humans. The aim of the current study was to test classical and molecular-biological methods for the identification of L. garvieae and examine antimicrobial susceptibility and capsule production, an important virulence factor. Additionally, tests for differentiation from closely related species, as well as epidemiological typing, were performed. In a period of 18 years (2002-2019), 24 isolates presumptively identified as L. garvieae were collected from Oncorhynchus mykiss and Salmo salar fish obtained either from retail stores or fish farms. In order to confirm the species, optimized PCR-based protocols were used. As a result, 21 of the tested strains were proved to be L. garvieae (n = 21). The remaining three isolates were Lactococcus lactis, Streptococcus iniae, and Enterococcus faecalis. Epidemiological typing by randomly amplified polymorphic DNA was performed. Except for a single KG+ isolate, all other strains belonged to the European capsular serotype KG-. All L. garvieae isolates showed susceptibility to all tested antibiotics with the exception of clindamycin, which was a diagnostic sign. A thorough optimization of diagnostic methods is essential to determining the etiology of specific infections affecting the personnel at risk in fish farms, the food industry, or within the broader community.
Collapse
Affiliation(s)
- Ivo Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, 2 Zdrave, Str., 1431 Sofia, Bulgaria; (T.V.S.); (V.S.B.); (D.Y.); (R.G.); (L.B.)
| | - Tanya V. Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, 2 Zdrave, Str., 1431 Sofia, Bulgaria; (T.V.S.); (V.S.B.); (D.Y.); (R.G.); (L.B.)
| | - Vasil Svetoslavov Boyanov
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, 2 Zdrave, Str., 1431 Sofia, Bulgaria; (T.V.S.); (V.S.B.); (D.Y.); (R.G.); (L.B.)
| | - Petya Orozova
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, National Diagnostic and Research Veterinary Medical Institute “Professor G. Pavlov”, 1000 Sofia, Bulgaria;
| | - Daniel Yordanov
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, 2 Zdrave, Str., 1431 Sofia, Bulgaria; (T.V.S.); (V.S.B.); (D.Y.); (R.G.); (L.B.)
| | - Nikolina Rusenova
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Raina Gergova
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, 2 Zdrave, Str., 1431 Sofia, Bulgaria; (T.V.S.); (V.S.B.); (D.Y.); (R.G.); (L.B.)
| | - Svetoslav G. Dimov
- Department of Genetics, Faculty of Biology, University of Sofia ‘St. Kliment Ohridski’, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria;
| | - Bilyana Sirakova
- Faculty of Dental Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
- “AIPPMPDM”, Ltd., 2800 Sandanski, Bulgaria
| | - Vladimir Radosavljević
- National Reference Laboratory for Fish Diseases, Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia;
| | - Liliya Boyanova
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, 2 Zdrave, Str., 1431 Sofia, Bulgaria; (T.V.S.); (V.S.B.); (D.Y.); (R.G.); (L.B.)
| | - Ivan Mitov
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, 2 Zdrave, Str., 1431 Sofia, Bulgaria; (T.V.S.); (V.S.B.); (D.Y.); (R.G.); (L.B.)
| |
Collapse
|
2
|
Neupane S, Rao S, Yan WX, Wang PC, Chen SC. First identification, molecular characterization, and pathogenicity assessment of Lactococcus garvieae isolated from cultured pompano in Taiwan. JOURNAL OF FISH DISEASES 2023; 46:1295-1309. [PMID: 37578999 DOI: 10.1111/jfd.13848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Lactococcosis, caused by Lactococcus garvieae, is an acute hemorrhagic septicemia in fish recorded in marine and freshwater aquaculture during the summer months. In 2020-2021, several sea cage Pompano farms recorded sudden fish mortality events. Based on the results of phenotypic and biochemical tests, L. garvieae was predicted to be the cause. PCR with L. garvieae specific primers (pLG1 and pLG2) targeting the 16S rRNA region further confirmed the etiological agent as L. garvieae after amplifying an 1100 base pairs (bp) product. Furthermore, the 16S rRNA sequences of the two representative strains (AOD109-196-2B and AOD110-215-2B) shared 99.81% identity with L. garvieae (GenBank accession number: MT597707.1). The genetic profiles of the strains were classified using pulsed-field gel electrophoresis after digestion with SmaI and ApaI, which clustered our strains under the same pulsotype. Multiplex PCR targeting the capsule gene cluster and serotype-specific PCR collectively showed that the strains were non-capsulated; thus, they belonged to serotype I. An experimental infection was designed to fulfil Koch's postulates by infecting healthy Pompano with case-driven L. garvieae strains (AOD109-196-2B and AOD110-215-2B) with a cumulative mortality of 70%. Overall, L. garvieae infection in Pompano emphasizes the need for better monitoring and control procedures in aquaculture settings.
Collapse
Affiliation(s)
- Sandip Neupane
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wei-Xiao Yan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
3
|
Lin Y, Han J, Barkema HW, Wang Y, Gao J, Kastelic JP, Han B, Qin S, Deng Z. Comparative Genomic Analyses of Lactococcus garvieae Isolated from Bovine Mastitis in China. Microbiol Spectr 2023; 11:e0299522. [PMID: 37154706 PMCID: PMC10269658 DOI: 10.1128/spectrum.02995-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Lactococcus garvieae is an emerging zoonotic pathogen, but there are few reports regarding bovine mastitis. The prevalence of L. garvieae represents an increasing disease threat and global public health risk. Thirty-nine L. garvieae isolates were obtained from 2,899 bovine clinical mastitis milk samples in 6 provinces of China from 2017 to 2021. Five clonal complexes were determined from 32 multilocus sequence types (MLSTs) of L. garvieae: sequence type 46 (ST46) was the predominant sequence type, and 13 novel MLSTs were identified. All isolates were resistant to chloramphenicol and clindamycin, but susceptible to penicillin, ampicillin, amoxicillin-clavulanic acid, imipenem, ceftiofur, enrofloxacin, and marbofloxacin. Based on genomic analyses, L. garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase. Most isolates had lsaD and mdtA antimicrobial resistance (AMR) genes. Based on COG (Clusters of Orthologous Genes database) results, the functions of defense, transcription and replication, and recombination and repair were enhanced in unique genes, whereas functions of translation, ribosomal structure, and biogenesis were enhanced in core genes. The KEGG functional categories enriched in unique genes included human disease and membrane transport, whereas COG functional categories enriched in core genes included energy metabolism, nucleotide metabolism, and translation. No gene was significantly associated with host specificity. In addition, analysis of core genome single nucleotide polymorphisms (SNPs) implied potential host adaptation of some isolates in several sequence types. In conclusion, this study characterized L. garvieae isolated from mastitis and detected potential adaptations of L. garvieae to various hosts. IMPORTANCE This study provides important genomic insights into a bovine mastitis pathogen, Lactococcus garvieae. Comprehensive genomic analyses of L. garvieae from dairy farms have not been reported. This study is a detailed and comprehensive report of novel features of isolates of L. garvieae, an important but poorly characterized bacterium, recovered in the past 5 years in 6 Chinese provinces. We documented diverse genetic features, including predominant sequence type ST46 and 13 novel MLSTs. Lactococcus garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase and resistance to chloramphenicol and clindamycin. Most isolates had lsaD and mdtA antimicrobial resistance genes. However, no gene was significantly associated with host specificity. This is the first report that characterized L. garvieae isolates from bovine mastitis and revealed potential host adaptations of L. garvieae to various hosts.
Collapse
Affiliation(s)
- Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jinge Han
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Shunyi Qin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Feito J, Araújo C, Gómez-Sala B, Contente D, Campanero C, Arbulu S, Saralegui C, Peña N, Muñoz-Atienza E, Borrero J, del Campo R, Hernández PE, Cintas LM. Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|