1
|
Cabezudo Ballesteros S, Sanabria Carretero P, Reinoso Barbero F. Review of electrical impedance tomography in the pediatric patient. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:479-485. [PMID: 38458492 DOI: 10.1016/j.redare.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/28/2023] [Indexed: 03/10/2024]
Abstract
Electrical impedance tomography (EIT) is a new method of monitoring non-invasive mechanical ventilation, at the bedside and useful in critically ill patients. It allows lung monitoring of ventilation and perfusion, obtaining images that provide information on lung function. It is based on the physical principle of impedanciometry or the body's ability to conduct an electrical current. Various studies have shown its usefulness both in adults and in pediatrics in respiratory distress syndrome, pneumonia and atelectasis in addition to pulmonary thromboembolism and pulmonary hypertension by also providing information on pulmonary perfusion, and may be very useful in perioperative medicine; especially in pediatrics avoiding repetitive imaging tests with ionizing radiation.
Collapse
Affiliation(s)
| | - P Sanabria Carretero
- Servicio de Anestesia y Reanimación, Hospital Universitario La Paz, Madrid, Spain
| | - F Reinoso Barbero
- Servicio de Anestesia y Reanimación, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
2
|
Rahtu M, Frerichs I, Pokka T, Becher T, Peltoniemi O, Kallio M. Effect of body position on ventilation distribution in healthy newborn infants: an observational study. Arch Dis Child Fetal Neonatal Ed 2024; 109:322-327. [PMID: 38071525 DOI: 10.1136/archdischild-2023-325967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/15/2023] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Newborn infants have unique respiratory physiology compared with older children and adults due to their lungs' structural and functional immaturity and highly compliant chest wall. To date, ventilation distribution has seldom been studied in this age group. This study aims to assess the effect of body position on ventilation distribution in spontaneously breathing healthy neonates. DESIGN Prospective observational study. SETTING Maternity wards of Oulu University Hospital. PATIENTS 20 healthy, spontaneously breathing, newborn infants. INTERVENTIONS Electrical impedance tomography data were recorded with a 32-electrode belt (Sentec AG, Landquart, Switzerland) in six different body positions in random order. Ventilation distribution was retrospectively assessed 10 minutes after each position change. MAIN OUTCOME MEASURES In each position, regional tidal impedance variation (ΔZ) and ventral-to-dorsal and right-to-left centre of ventilation were measured. RESULTS The mean global ΔZ was the largest in supine position and it was smaller in prone and lateral positions. Yet, global ΔZ did not differ in supine positions, ventilation distribution was more directed towards the non-dependent lung region in supine tilted position (p<0.001). In prone, a reduction of global ΔZ was observed (p<0.05) corresponding to an amount of 10% of global tidal variation in supine position. In both lateral positions, tidal ventilation was distributed more to the corresponding non-dependent lung region. CONCLUSIONS Prone or lateral body positioning in healthy spontaneously breathing newborns leads to a redistribution of ventilation to the non-dependent lung regions and at the same time global tidal volume is reduced as compared with supine.
Collapse
Affiliation(s)
- Marika Rahtu
- Department of Pediatrics and Adolescent Medicine and Research Unit of Clinical Medicine, Oulu University Hospital, Oulu, Finland
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Tytti Pokka
- Department of Pediatrics and Adolescent Medicine and Research Unit of Clinical Medicine, Oulu University Hospital, Oulu, Finland
- Research Service Unit, Oulu University Hospital, Oulu, Finland
| | - Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Outi Peltoniemi
- Department of Pediatrics and Adolescent Medicine and Research Unit of Clinical Medicine, Oulu University Hospital, Oulu, Finland
| | - Merja Kallio
- Department of Pediatrics and Adolescent Medicine and Research Unit of Clinical Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
3
|
Leroue MK, Maddux AB, Mourani PM. Prone positioning in children with respiratory failure because of coronavirus disease 2019. Curr Opin Pediatr 2021; 33:319-324. [PMID: 33782242 PMCID: PMC8544610 DOI: 10.1097/mop.0000000000001009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Acute respiratory distress syndrome (ARDS) is a common manifestation of severe COVID-19. Prone positioning has been used successfully in adult patients with ARDS and has been shown to decrease mortality. The efficacy of prone positioning in pediatric ARDS is less clear. In this review, we discuss the physiologic principles and literature on prone positioning in adults and children relative to COVID-19. RECENT FINDINGS There are limited published data on prone positioning in respiratory failure because of COVID-19. The use of proning in nonintubated patients with COVID-19 may improve oxygenation and dyspnea but has not been associated with improved outcomes. Initial adult cohort studies of intubated patients undergoing prone positioning in severe ARDS related to COVID-19 have shown an improvement in mortality. Although the use of proning in children with severe COVID-19 is recommended, data supporting its use is scarce. SUMMARY Additional studies to evaluate the efficacy of prone positioning in pediatric ARDS are needed to provide evidence for or against this treatment strategy in children. Given the unknown evolution of this pandemic, collaborative research efforts across pediatric centers provides the greatest opportunity to develop a data driven-approach to make use of this potential therapy.
Collapse
Affiliation(s)
- Matthew K Leroue
- Section of Pediatric Critical Care, University of Colorado School of Medicine, Aurora, Colorado
| | - Aline B Maddux
- Section of Pediatric Critical Care, University of Colorado School of Medicine, Aurora, Colorado
| | - Peter M Mourani
- Section of Pediatric Critical Care, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
4
|
Schinckel NF, Hickey L, Perkins EJ, Pereira-Fantini PM, Koeppenkastrop S, Stafford I, Dowse G, Tingay DG. Skin-to-skin care alters regional ventilation in stable neonates. Arch Dis Child Fetal Neonatal Ed 2021; 106:76-80. [PMID: 32732379 DOI: 10.1136/archdischild-2020-319136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Skin-to-skin care (SSC) has proven psychological benefits; however, the physiological effects are less clearly defined. Regional ventilation patterns during SSC have not previously been reported. This study aimed to compare regional ventilation indices and other cardiorespiratory parameters during prone SSC with supine and prone position cot-nursing. DESIGN Prospective observational study. SETTING Single quaternary neonatal intensive care unit in Australia. PATIENTS 20 infants spontaneously breathing (n=17) or on non-invasive ventilation (n=3), with mean (SD) gestational age at birth of 33 (5) weeks. INTERVENTIONS Thirty-minute episodes of care in each position: supine cot care, prone SSC and prone cot care preceding a 10 min period of continuous electrical impedance tomography measurements of regional ventilation. MAIN OUTCOME MEASURES In each position, ventral-dorsal and right-left centre of ventilation (CoV), percentage of whole lung ventilation by region and percentage of apparent unventilated lung regions were determined. Heart and respiratory rates, oxygen saturation and axillary temperature were also measured. RESULTS Heart and respiratory rates, oxygen saturation, temperature and right-left lung ventilation did not differ between the three positions (mixed-effects model). Ventilation generally favoured the dorsal lung, but the mean (95% CI) ventrodorsal CoV was -2.0 (-0.4 to -3.6)% more dorsal during SSC compared with prone. Supine position resulted in 5.0 (1.5 to 5.3)% and 4.5 (3.9 to 5.1)% less apparently unventilated lung regions compared with SSC and prone, respectively. CONCLUSIONS In clinically stable infants, SSC generates a distinct regional ventilation pattern that is independent of prone position and results in greater distribution of ventilation towards the dorsal lung.
Collapse
Affiliation(s)
- Nicholas F Schinckel
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia .,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leah Hickey
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neonatal Medicine, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sienna Koeppenkastrop
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Isabella Stafford
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Georgie Dowse
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neonatal Medicine, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Synchronized Inflations Generate Greater Gravity-Dependent Lung Ventilation in Neonates. J Pediatr 2021; 228:24-30.e10. [PMID: 32827530 DOI: 10.1016/j.jpeds.2020.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To describe the regional distribution patterns of tidal ventilation within the lung during mechanical ventilation that is synchronous or asynchronous with an infant's own breathing effort. STUDY DESIGN Intubated infants receiving synchronized mechanical ventilation at The Royal Children's Hospital neonatal intensive care unit were studied. During four 10-minute periods of routine care, regional distribution of tidal volume (VT; electrical impedance tomography), delivered pressure, and airway flow (Florian Respiratory Monitor) were measured for every inflation. Post hoc, each inflation was then classified as synchronous or asynchronous from video data of the ventilator screen, and the distribution of absolute VT and delivered ventilation characteristics determined. RESULTS In total, 2749 inflations (2462 synchronous) were analyzed in 19 infants; mean (SD) age 28 (30) days, gestational age 35 (5) weeks. Synchronous inflations were associated with a shorter respiratory cycle (P = .004) and more homogenous VT (center of ventilation) along the right (0%) to left (100%) lung plane; 45.3 (8.6)% vs 48.8 (9.4)% (uniform ventilation 46%). The gravity-dependent center of ventilation was a mean (95% CI) 2.1 (-0.5, 4.6)% toward the dependent lung during synchronous inflations. Tidal ventilation relative to anatomical lung size was more homogenous during synchronized inflations in the dependent lung. CONCLUSIONS Synchronous mechanical ventilator lung inflations generate more gravity-dependent lung ventilation and more uniform right-to-left ventilation than asynchronous inflations.
Collapse
|