1
|
Wang F, Liu Z, Li WX, Wang XM, Yang J, Zhao ZH, Jie ZJ. Nitric oxide synthase inhibitors reduce the formation of neutrophil extracellular traps and alleviate airway inflammation in the mice model of asthma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03831-7. [PMID: 39878819 DOI: 10.1007/s00210-025-03831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Asthma, a widespread chronic inflammatory disease can contribute to different degrees of lung function damage. The objective of this study is to explore the potential effects of nitric oxide synthase (NOS) inhibitors in asthma using mice model induced by ovalbumin (OVA). BALB/c mice were treated with OVA to establish an asthma model. Mice were intranasally challenged with different NOS inhibitors and analyzed the impact of NOS inhibitors on the lung tissues and bronchoalveolar lavage fluid (BALF). Histopathological analysis was performed by Periodic Acid-Schiff (PAS) staining. Airway reactivity was assessed using methacholine challenge testing. The concentrations of nitric oxide (NO), Neutrophil extracellular traps (NETs), and cytokines were determined by enzyme-linked immunosorbent assay (ELISA) assay. NOS inhibitors effectively improved airway inflammation and reduced airway hyperresponsiveness. In addition, NOS inhibitors decreased the concentrations of NO, NETs, and inflammation in the airway and BALF. The decreased NO production and reduced NET formation in the lung indicate that NOS inhibitors inhibit the process of NET release to alleviate asthma.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhen Liu
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Wen-Xuan Li
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Xiao-Ming Wang
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ju Yang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhu-Hui Zhao
- Department of Pediatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Zhi-Jun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Geng X, Wang DW, Li H. The pivotal role of neutrophil extracellular traps in cardiovascular diseases: Mechanisms and therapeutic implications. Biomed Pharmacother 2024; 179:117289. [PMID: 39151311 DOI: 10.1016/j.biopha.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.
Collapse
Affiliation(s)
- Xinyu Geng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
4
|
Henley K, Tresselt E, Hook JS, Patel PA, Gill MA, Moreland JG. Granular Insights: Neutrophil Predominance and Elastase Release in Severe Asthma Exacerbations in a Pediatric Cohort. Cells 2024; 13:533. [PMID: 38534377 PMCID: PMC10969278 DOI: 10.3390/cells13060533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The chronic inflammatory component of asthma is propagated by granulocytes, including neutrophils and eosinophils, in the peripheral circulation and airway. Previous studies have suggested that these cells have an altered expression of adhesion-related molecules and a propensity for the release of granule contents that may contribute to tissue damage and enhance inflammatory complications in patients with status asthmaticus. The goal of this prospective cohort study at a tertiary care pediatric hospital with a large population of asthma patients was to assess the role of granulocyte-based inflammation in the development of asthma exacerbation. Subjects were enrolled from two patient populations: those with mild-to-moderate asthma exacerbations seen in the emergency department and those with severe asthma admitted to the intensive care unit (PICU). Clinical data were collected, and blood was drawn. Granulocytes were immediately purified, and the phenotype was assessed, including the expression of cell surface markers, elastase release, and cytokine production. Severe asthmatics admitted to the PICU displayed a significantly higher total neutrophil count when compared with healthy donors. Moreover, little to no eosinophils were found in granulocyte preparations from severe asthmatics. Circulating neutrophils from severe asthmatics admitted to the PICU displayed significantly increased elastase release ex vivo when compared with the PMN from healthy donors. These data suggest that the neutrophil-based activation and release of inflammatory products displayed by severe asthmatics may contribute to the propagation of asthma exacerbations.
Collapse
Affiliation(s)
- Kirstin Henley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.H.); (E.T.); (J.S.H.)
| | - Erin Tresselt
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.H.); (E.T.); (J.S.H.)
| | - Jessica S. Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.H.); (E.T.); (J.S.H.)
| | - Parth A. Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.H.); (E.T.); (J.S.H.)
| | - Michelle A. Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.H.); (E.T.); (J.S.H.)
| | - Jessica G. Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.H.); (E.T.); (J.S.H.)
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Carreto-Binaghi LE, Sartillo-Mendoza LG, Muñoz-Torrico M, Guzmán-Beltrán S, Carranza C, Torres M, González Y, Juárez E. Serum pro-inflammatory biomarkers associated with improvement in quality of life in pulmonary tuberculosis. Front Immunol 2023; 14:1241121. [PMID: 37753080 PMCID: PMC10518397 DOI: 10.3389/fimmu.2023.1241121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction Pulmonary dysfunction is an underestimated complication in tuberculosis (TB) infection, affecting quality of life (QoL). Although respiratory function tests objectively reflect lung disturbances in a specific moment, predictors of illness severity at the time of diagnosis are still lacking. Methods We measured serum pro-inflammatory cytokines (TNF-α and IL-8), eicosanoids (PGE2, LTB4, RvD1, Mar1, and LXA4), a marker of tissue damage (cell-free nucleosomes), and indicators of redox status (malonaldehyde, 8-isoprostane, total oxidants, and antioxidants), as well as a score of radiological abnormalities (SRA) and a QoL questionnaire, in 25 patients with pulmonary TB at the time of diagnosis (t0) and two months after the initiation of treatment (t2). Results We found higher antioxidant levels in the patients with the worst QoL at t0, and all the indicators of the prooxidant state were significantly reduced at t2, while the total antioxidant levels increased. LTB4, a pro-inflammatory eicosanoid, was diminished at t2, while all the pro-resolutory lipids decreased substantially. Significant correlations between the SRA and the QoL scores were observed, the latter showing a substantial reduction at t2, ranking it as a reliable tool for monitoring disease evolution during TB treatment. Discussion These results suggest that evaluating a combination of these markers might be a valuable predictor of QoL improvement and a treatment response indicator; in particular, the oxidation metabolites and eicosanoid ratios could also be proposed as a future target for adjuvant therapies to reduce inflammation-associated lung injury in TB disease.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Luis Gustavo Sartillo-Mendoza
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
- Becario de la Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico, Mexico
| | - Marcela Muñoz-Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Silvia Guzmán-Beltrán
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Claudia Carranza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Martha Torres
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Yolanda González
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| |
Collapse
|
6
|
Pangeni R, Meng T, Poudel S, Sharma D, Hutsell H, Ma J, Rubin BK, Longest W, Hindle M, Xu Q. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int J Pharm 2023; 634:122661. [PMID: 36736964 PMCID: PMC9975059 DOI: 10.1016/j.ijpharm.2023.122661] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Airway mucus is a complex viscoelastic gel that provides a defensive physical barrier and shields the airway epithelium by trapping inhaled foreign pathogens and facilitating their removal via mucociliary clearance (MCC). In patients with respiratory diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), non-CF bronchiectasis, and asthma, an increase in crosslinking and physical entanglement of mucin polymers as well as mucus dehydration often alters and typically reduces mucus mesh network pore size, which reduces neutrophil migration, decreases pathogen capture, sustains bacterial infection, and accelerates lung function decline. Conventional aerosol particles containing hydrophobic drugs are rapidly captured and removed by MCC. Therefore, it is critical to design aerosol delivery systems with the appropriate size and surface chemistry that can improve drug retention and absorption with the goal of increased efficacy. Biodegradable muco-adhesive particles (MAPs) and muco-penetrating particles (MPPs) have been engineered to achieve effective pulmonary delivery and extend drug residence time in the lungs. MAPs can be used to target mucus as they get trapped in airway mucus by steric obstruction and/or adhesion. MPPs avoid muco-adhesion and are designed to have a particle size smaller than the mucus network, enhancing lung retention of particles as well as transport to the respiratory epithelial layer and drug absorption. In this review, we aim to provide insight into the composition of airway mucus, rheological characteristics of airway mucus in healthy and diseased subjects, the most recent techniques to study the flow dynamics and particle diffusion in airway mucus (in particular, multiple particle tracking, MPT), and the advancements in engineering MPPs that have contributed to improved airway mucus penetration, lung distribution, and retention.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Hutsell
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jonathan Ma
- Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Bruce K Rubin
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Fraga-Silva TFDC, Boko MMM, Martins NS, Cetlin AA, Russo M, Vianna EO, Bonato VLD. Asthma-associated bacterial infections: Are they protective or deleterious? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:14-22. [PMID: 37780109 PMCID: PMC10510013 DOI: 10.1016/j.jacig.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/03/2023]
Abstract
Eosinophilic, noneosinophilic, or mixed granulocytic inflammations are the hallmarks of asthma heterogeneity. Depending on the priming of lung immune and structural cells, subjects with asthma might generate immune responses that are TH2-prone or TH17-prone immune response. Bacterial infections caused by Haemophilus, Moraxella, or Streptococcus spp. induce the secretion of IL-17, which in turn recruit neutrophils into the airways. Clinical studies and experimental models of asthma indicated that neutrophil infiltration induces a specific phenotype of asthma, characterized by an impaired response to corticosteroid treatment. The understanding of pathways that regulate the TH17-neutrophils axis is critical to delineate and develop host-directed therapies that might control asthma and its exacerbation episodes that course with infectious comorbidities. In this review, we outline clinical and experimental studies on the role of airway epithelial cells, S100A9, and high mobility group box 1, which act in concert with the IL-17-neutrophil axis activated by bacterial infections, and are related with asthma that is difficult to treat. Furthermore, we report critically our view in the light of these findings in an attempt to stimulate further investigations and development of immunotherapies for the control of severe asthma.
Collapse
Affiliation(s)
| | - Mèdéton Mahoussi Michaël Boko
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Núbia Sabrina Martins
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Andrea Antunes Cetlin
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Elcio Oliveira Vianna
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vania Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
8
|
Insights into Personalised Medicine in Bronchiectasis. J Pers Med 2023; 13:jpm13010133. [PMID: 36675794 PMCID: PMC9863431 DOI: 10.3390/jpm13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Bronchiectasis is a heterogenous disease with multiple aetiologies resulting in inflammation and dilatation of the airways with associated mucus production and chronic respiratory infection. The condition is being recognised ever more frequently as the availability of computed tomography increases. It is associated with significant morbidity and healthcare-related costs. With new understanding of the disease process, varying endotypes, identification of underlying causes and treatable traits, the management of bronchiectasis can be increasingly personalised.
Collapse
|
9
|
Role of neutrophil extracellular traps in inflammatory evolution in severe acute pancreatitis. Chin Med J (Engl) 2022; 135:2773-2784. [PMID: 36729096 PMCID: PMC9945416 DOI: 10.1097/cm9.0000000000002359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage, characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP, showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting NETs in different situations require further investigation.
Collapse
|
10
|
Albaladejo-Riad N, Cuesta A, Esteban MÁ. Induction and characterization of extracellular traps by gilthead seabream (Sparus aurata L.) head-kidney leucocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 130:582-590. [PMID: 36152801 DOI: 10.1016/j.fsi.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was the induction and characterization of extracellular traps (ETs) produced by gilthead seabream (Sparus aurata L.) head-kidney leucocytes. The cells were incubated several times (10, 30, 60, 120, and 180 min) with different concentrations of the stimulants diluted in RPMI-1640 culture medium: RPMI-1640 (control), β-glucan from Saccharomyces cerevisiae (BG, 0-400 μg mL-1), lipopolysaccharide from Escherichia coli (LPS, 0-10 μg mL-1), calcium ionophore A23187 (CaI, 0-5 μg mL-1), Phorbol 12-myristate 13-acetate (PMA, 0-1000 ng mL-1) and polyinosinic-polycytidylic acid sodium salt (Poly I:C, 0-200 μg mL-1). BG, LPS and CaI exerted only weak stimulatory activity, while PMA and poly I:C exerted a potent one. After stimulation of the leucocytes, ETs structures were quantified and visualised through staining of the chromatin with nucleic acid-specific dyes and immunocytochemical probing of characteristic proteins expected to decorate the structure. ETs structures had DNA and myeloperoxidase. The ETs morphology was studied by light and scanning electron microscopy. These data confirm that seabream leucocytes form ETs with different morphological properties, depending on the used stimulant. These results will be the basis for new studies to analyse the implication of this mechanism in fish immunity. All this new knowledge will have its application in fish farms when we learn to manipulate the innate immune response in order to mitigate microbial infections.
Collapse
Affiliation(s)
- Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
11
|
Sex Steroids Effects on Asthma: A Network Perspective of Immune and Airway Cells. Cells 2022; 11:cells11142238. [PMID: 35883681 PMCID: PMC9318292 DOI: 10.3390/cells11142238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
A multitude of evidence has suggested the differential incidence, prevalence and severity of asthma between males and females. A compilation of recent literature recognized sex differences as a significant non-modifiable risk factor in asthma pathogenesis. Understanding the cellular and mechanistic basis of sex differences remains complex and the pivotal point of this ever elusive quest, which remains to be clarified in the current scenario. Sex steroids are an integral part of human development and evolution while also playing a critical role in the conditioning of the immune system and thereby influencing the function of peripheral organs. Classical perspectives suggest a pre-defined effect of sex steroids, generalizing estrogens popularly under the “estrogen paradox” due to conflicting reports associating estrogen with a pro- and anti-inflammatory role. On the other hand, androgens are classified as “anti-inflammatory,” serving a protective role in mitigating inflammation. Although considered mainstream and simplistic, this observation remains valid for numerous reasons, as elaborated in the current review. Women appear immune-favored with stronger and more responsive immune elements than men. However, the remarkable female predominance of diverse autoimmune and allergic diseases contradicts this observation suggesting that hormonal differences between the sexes might modulate the normal and dysfunctional regulation of the immune system. This review illustrates the potential relationship between key elements of the immune cell system and their interplay with sex steroids, relevant to structural cells in the pathophysiology of asthma and many other lung diseases. Here, we discuss established and emerging paradigms in the clarification of observed sex differences in asthma in the context of the immune system, which will deepen our understanding of asthma etiopathology.
Collapse
|
12
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Carr TF, Peters MC. Novel potential treatable traits in asthma: Where is the research taking us? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:27-36. [PMID: 37780590 PMCID: PMC10509971 DOI: 10.1016/j.jacig.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/03/2023]
Abstract
Asthma is a complex, heterogeneous disease in which the underlying mechanisms are not fully understood. Patients are often grouped into phenotypes (based on clinical, biologic, and physiologic characteristics) and endotypes (based on distinct genetic or molecular mechanisms). Recently, patients with asthma have been broadly split into 2 phenotypes based on their levels of type 2 inflammation: type 2 and non-type 2 asthma. However, this approach is likely oversimplified, and our understanding of the non-type 2 mechanisms in asthma remains extremely limited. A better understanding of asthma phenotypes and endotypes may assist in development of drugs for new therapeutic targets in asthma. One approach is to identify "treatable traits," which are specific patient characteristics related to phenotypes and endotypes that can be targeted by therapies. This review will focus on emerging treatable traits in asthma and aim to describe novel patient subgroups and endotypes that may represent the next step in the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Tara F. Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Calif
| |
Collapse
|
14
|
Jahan P, Tahseen R, Parvez M, Kumar GS. Combined Neutrophil-to-Lymphocyte Ratio and Serum Neutrophil Elastase: Is it an Emerging Marker of Asthma Prognosis? BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_290_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Jahan P, Tahseen R, Parvez M, Kumar GS. A correlational study on neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in bronchial asthma. ADVANCES IN HUMAN BIOLOGY 2022. [DOI: 10.4103/aihb.aihb_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
17
|
Characteristics and Role of Neutrophil Extracellular Traps in Asthma. Inflammation 2021; 45:6-13. [PMID: 34480251 PMCID: PMC8803764 DOI: 10.1007/s10753-021-01526-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. The incidence of asthma has continued to increase every year. Bronchial asthma involves a variety of cells, including airway inflammatory cells, structural cells, and neutrophils, which have gained more attention because they secrete substances that play an important role in the occurrence and development of asthma. Neutrophil extracellular traps (NETs) are mesh-like structures composed of DNA, histones, and non-histone molecules that can be secreted from neutrophils. NETs can enrich anti-bacterial substances and limit pathogen migration, thus having a protective effect in case of inflammation. However, despite of their anti-inflammatory properties, NETs have been shown to trigger allergic asthma and worsen asthma progression. Here, we provide a systematic review of the roles of NETs in asthma.
Collapse
|
18
|
Zhou E, Sun Y, Fu Y, Wang X, Zhu X, Wu Z, Li P, Wang J, Yang Z. Bongkrekic acid induced neutrophil extracellular traps via p38, ERK, PAD4, and P2X1-mediated signaling. Toxicol Appl Pharmacol 2021; 423:115580. [PMID: 34019862 DOI: 10.1016/j.taap.2021.115580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/15/2022]
Abstract
Bongkrekic acid (BKA) produced by pseudomonas cocovenenans is a deadly toxin, and is mainly found in spoiled or fermented foods. However, less is known on its immunotoxicity. Neutrophil extracellular traps (NETs) are a novel effector mechanism of neutrophils against invading pathogens, but excessive NETs also contribute to tissue damage. This study aimed to investigate NET formation triggered by BKA in murine neutrophils, and describe its characteristics and potential mechanisms. Our results showed that BKA triggered NET formation via co-localization of DNA and histone or MPO by immunostaining. Moreover, BKA-triggered NET formation was dose- and time-dependent via NET quantification based on Picogreen-derived fluorescence intensities. Furthermore, BKA increased ROS production in neutrophils. Pharmacological inhibition indicated that BKA-triggered NET formation was associated with ROS-p38 and -ERK signaling pathways, but independent on NADPH oxidase. Besides, PAD4 and P2X1 receptor also mediated BKA-triggered NET formation. To our knowledge, all these findings provide for the first time an initial understanding of BKA on innate immunity, which might be helpful for further investigation on BKA immunotoxicity.
Collapse
Affiliation(s)
- Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Youpeng Sun
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yiwu Fu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xia Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
19
|
Chen Z, Xu SL, Ge LY, Zhu J, Zheng T, Zhu Z, Zhou L. Sialic acid-binding immunoglobulin-like lectin 9 as a potential therapeutic target for chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:757-764. [PMID: 33595976 PMCID: PMC8104259 DOI: 10.1097/cm9.0000000000001381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) has become the third-leading cause of death worldwide, which is a severe economic burden to the healthcare system. Chronic bronchitis is the most common condition that contributes to COPD, both locally and systemically. Neutrophilic inflammation predominates in the COPD airway wall and lumen. Logically, repression of neutrophilia is an essential fashion to COPD treatment. However, currently available anti-neutrophilic therapies provide little benefit in COPD patients and may have serious side effects. Thus, there is an urgent need to explore an effective and safe anti-neutrophilic approach that might delay progression of the disease. Sialic acid-binding immunoglobulin-like lectin (Siglec)-9 is a member of the Siglec cell surface immunoglobulin family. It is noteworthy that Siglec-9 is highly expressed on human neutrophils and monocytes. Ligation of Siglec-9 by chemical compounds or synthetic ligands induced apoptosis and autophagic-like cell death in human neutrophils. Furthermore, administration of antibody to Siglec-E, mouse functional ortholog of Siglec-9, restrained recruitment and activation of neutrophils in mouse models of airway inflammation in vivo. Given the critical role that neutrophils play in chronic bronchitis and emphysema, targeting Siglec-9 could be beneficial for the treatment of COPD, asthma, fibrosis, and related chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuang-Lan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin-Yang Ge
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jin Zhu
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, China
| | - Tao Zheng
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Zhou Zhu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
20
|
Shilovskiy IP, Nikolskii AA, Kurbacheva OM, Khaitov MR. Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy. BIOCHEMISTRY (MOSCOW) 2021; 85:854-868. [PMID: 33045947 DOI: 10.1134/s0006297920080027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For a long time asthma was commonly considered as a homogeneous disease. However, recent studies provide increasing evidence of its heterogeneity and existence of different phenotypes of the disease. Currently, classification of asthma into several phenotypes is based on clinical and physiological features, anamnesis, and response to therapy. This review describes five most frequently identified asthma phenotypes. Neutrophilic asthma (NA) deserves special attention, since neutrophilic inflammation of the lungs is closely associated with severity of the disease and with the resistance to conventional corticosteroid therapy. This review focuses on molecular mechanisms of neutrophilic asthma pathogenesis and on the role of Th1- and Th17-cells in the development of this type of asthma. In addition, this review presents current knowledge of neutrophil biology. It has been established that human neutrophils are represented by at least three subpopulations with different biological functions. Therefore, total elimination of neutrophils from the lungs can result in negative consequences. Based on the new knowledge of NA pathogenesis and biology of neutrophils, the review summarizes current approaches for treatment of neutrophilic asthma and suggests new promising ways to treat this type of asthma that could be developed in future.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia.
| | - A A Nikolskii
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - O M Kurbacheva
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - M R Khaitov
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| |
Collapse
|
21
|
Keir HR, Richardson H, Fillmore C, Shoemark A, Lazaar AL, Miller BE, Tal-Singer R, Chalmers JD, Mohan D. CXCL-8-dependent and -independent neutrophil activation in COPD: experiences from a pilot study of the CXCR2 antagonist danirixin. ERJ Open Res 2020; 6:00583-2020. [PMID: 33263062 PMCID: PMC7682717 DOI: 10.1183/23120541.00583-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/16/2023] Open
Abstract
The implications of these findings are significant for development of CXCR2 antagonists and other mechanisms targeting neutrophil activation or NETosis, suggesting that IL-8-dependent mechanisms will only work in a subset of COPD patients https://bit.ly/32SeisO.
Collapse
Affiliation(s)
- Holly R Keir
- Ninewells Clinical Research Centre, University of Dundee, Dundee, UK
| | | | | | - Amelia Shoemark
- Ninewells Clinical Research Centre, University of Dundee, Dundee, UK
| | | | | | | | - James D Chalmers
- Ninewells Clinical Research Centre, University of Dundee, Dundee, UK
| | | |
Collapse
|
22
|
Wang C, Wang J, Liu X, Han Z, Aimin Jiang, Wei Z, Yang Z. Cl-amidine attenuates lipopolysaccharide-induced mouse mastitis by inhibiting NF-κB, MAPK, NLRP3 signaling pathway and neutrophils extracellular traps release. Microb Pathog 2020; 149:104530. [PMID: 32980473 DOI: 10.1016/j.micpath.2020.104530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023]
Abstract
Cl-amidine, a peptidylarginine deiminase inhibitor, has been shown to ameliorate the disease course and clinical manifestation in variety of disease models. Due to the beneficial effects of Cl-amidine, it has been becoming the hottest compound for the study in inflammatory diseases. However, the anti-inflammatory activity of Cl-amidine in lipopolysaccharide (LPS)-induced mouse mastitis remains unclear. In this study, we investigated the effects of Cl-amidine on LPS-induced mastitis mouse model. The mouse mastitis model was established by injection of LPS through the canals of the mammary gland. Cl-amidine was administered intraperitoneally 1 h before LPS treatment. The results showed that Cl-amidine significantly attenuated the damage of the mammary gland, which suppressed the activity of myeloperoxidase (MPO). The real-time PCR results indicated that Cl-amidine inhibited the production of TNF-α, IL-1β and IL-6 in LPS-induced mouse mastitis. Moreover, the western blot results indicated that Cl-amidine decreased the phosphorylation of IκB, p65, p38, ERK and the expression of NLRP3 in LPS-induced mouse mastitis. Furthermore, the neutrophils extracellular traps (NETs) were determined by Quant-iT picogreen dsDNA assay kit®, which suggested that Cl-amidine significantly inhibited the NETs in mouse serum. This study demonstrated that Cl-amidine decreased the pathological injury in LPS-induced mouse mastitis by inhibiting NF-κB, MAPK, NLRP3 signaling pathway and NETs release, which provides a potential candidate for the treatment of mastitis.
Collapse
Affiliation(s)
- Chaoqun Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Aimin Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| |
Collapse
|
23
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020; 34:13156-13170. [PMID: 32860267 PMCID: PMC8121456 DOI: 10.1096/fj.202001607r] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
The presence of DNA in the cytosol is usually a sign of microbial infections, which alerts the host innate immune system to mount a defense response. Cyclic GMP-AMP synthase (cGAS) is a critical cytosolic DNA sensor that elicits robust innate immune responses through the production of the second messenger, cyclic GMP-AMP (cGAMP), which binds and activates stimulator of interferon genes (STING). However, cGAS binds to DNA irrespective of DNA sequence, therefore, self-DNA leaked from the nucleus or mitochondria can also serve as a cGAS ligand to activate this pathway and trigger extensive inflammatory responses. Dysregulation of the cGAS-STING pathway is responsible for a broad array of inflammatory and autoimmune diseases. Recently, evidence has shown that self-DNA release and cGAS-STING pathway over-activation can drive lung disease, making this pathway a promising therapeutic target for inflammatory lung disease. Here, we review recent advances on the cGAS-STING pathway governing self-DNA sensing, highlighting its role in pulmonary disease.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
24
|
Covantes-Rosales CE, Toledo-Ibarra GA, González-Navarro I, Agraz-Cibrian JM, Girón-Pérez DA, Ventura-Ramon GH, Diaz-Resendiz KJG, Bueno-Durán AY, Ponce-Regalado MD, Girón-Pérez MI. Diazinon acute exposure induces neutrophil extracellular traps in Nile tilapia (Oreochromis niloticus). FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1798885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- C. E. Covantes-Rosales
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - G. A. Toledo-Ibarra
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - I. González-Navarro
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - J. M. Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - D. A. Girón-Pérez
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - G. H. Ventura-Ramon
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - K. J. G. Diaz-Resendiz
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - A. Y. Bueno-Durán
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - M. D. Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Carretera a Yahualica, Tepatitlán de Morelos, Jalisco, México
| | - M. I. Girón-Pérez
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| |
Collapse
|
25
|
Kipen HM, Laskin DL. NETs: a new biomarker of traffic-related air pollution exposure: are they ready to catch fish? Eur Respir J 2020; 55:55/4/2000305. [PMID: 32245775 DOI: 10.1183/13993003.00305-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Howard M Kipen
- Dept of Environmental and Occupational Health, Rutgers University, School of Public Health, Piscataway, NJ, USA .,Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, NJ, USA
| | - Debra L Laskin
- Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, NJ, USA.,Dept of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| |
Collapse
|
26
|
Gál Z, Gézsi A, Pállinger É, Visnovitz T, Nagy A, Kiss A, Sultész M, Csoma Z, Tamási L, Gálffy G, Szalai C. Plasma neutrophil extracellular trap level is modified by disease severity and inhaled corticosteroids in chronic inflammatory lung diseases. Sci Rep 2020; 10:4320. [PMID: 32152402 PMCID: PMC7062787 DOI: 10.1038/s41598-020-61253-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
A flow cytometry-based method was developed to quantify in vivo circulating neutrophil extracellular trap (NET) levels in plasma and compare them in patients with different chronic inflammatory lung diseases. Seventeen asthmatic and 11 control children, 12 adult controls, 46 asthmatic, 6 COPD and 6 adult patients with asthma-COPD overlap syndrome (ACOS) were recruited in the study. The presence of NETs in unstimulated cell-free plasma was confirmed and visualized by confocal laser-scanning microscopy. No significant differences were found in plasma NET levels between children and adults, children with or without asthma and adults with or without asthma, COPD or ACOS. When asthmatic patients were stratified according to their disease severity the average plasma NET level was significantly higher in asthmatic patients with more serious symptoms (adjusted p = 0.027). Patients with poorer pulmonary functions had higher plasma NET levels which negatively correlated with the FEV1 values (r = -0.39, p = 0.002). Patients who were medicated daily with inhaled corticosteroids (ICS) had significantly lower average plasma NET level than patients who did not or just occasionally used ICS (p = 0.027). If further studies confirm the NET-lowering effect of ICS in the circulation, it can be utilized in diseases where NETosis contributes to the pathogenesis.
Collapse
Affiliation(s)
- Zsófia Gál
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - Adrienne Nagy
- Heim Pál Children's Hospital, Budapest, 1089, Hungary
| | - András Kiss
- Heim Pál Children's Hospital, Budapest, 1089, Hungary
| | | | - Zsuzsanna Csoma
- National Korányi Institute of TB and Pulmonology, Budapest, 1121, Hungary
| | - Lilla Tamási
- Department of Pulmonology, Semmelweis University, Budapest, 1083, Hungary
| | | | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary.
- Heim Pál Children's Hospital, Budapest, 1089, Hungary.
| |
Collapse
|
27
|
Zhang S, Jia X, Zhang Q, Zhang L, Yang J, Hu C, Shi J, Jiang X, Lu J, Shen H. Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. J Cell Mol Med 2019; 24:1658-1669. [PMID: 31821687 PMCID: PMC6991674 DOI: 10.1111/jcmm.14858] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Excessive neutrophil extracellular trap (NET) formation may contribute to polymyositis (PM)‐associated interstitial lung diseases (ILD), but the underlying mechanism is not fully revealed. In this study, we found that NET accelerated the progression of ILD and promoted pulmonary fibrosis (PF) in vivo. miR‐7 expression was down‐regulated in lung tissue of PM group than control group, and NETs further decreased miR‐7 expression. TLR9 and Smad2 were up‐regulated in lung tissue of PM group than control group, and NETs further increased TLR9 and Smad2 expressions. In vitro experiments showed that PMA‐treated NETs accelerated the proliferation of LF and their differentiation into myofibroblast (MF), whereas DNase I decreased the promotion effect of NETs. Neutrophil extracellular trap components myeloperoxidase (MPO) and histone 3 also promoted the proliferation and differentiation of LF. In addition, we demonstrated that TLR9 involved in the regulation of NETs on LF proliferation and differentiation, and confirmed the interaction between miR‐7 and Smad2 in LF. Finally, miR‐7‐Smad2 pathway was confirmed to be involved in the regulation of TLR9 on LF proliferation and differentiation. Therefore, NETs promote PM‐related ILD, and TLR9‐miR‐7‐Smad2 signalling pathway is involved in the proliferation of LFs and their differentiation into MFs.
Collapse
Affiliation(s)
- Sigong Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xueqin Jia
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiuyue Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Yang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Caihong Hu
- Department of Endocrinology, Lanzhou University Second Hospital, Lanzhou, China
| | - Junnian Shi
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jinyue Lu
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
28
|
Wang C, Wei Z, Han Z, Wang J, Zhang X, Wang Y, Liu Q, Yang Z. Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113021. [PMID: 31415976 DOI: 10.1016/j.envpol.2019.113021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/27/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a ubiquitous toxic heavy metal derived mainly from industrial processes. In industrialized societies, individuals are exposed to a plethora of sources of Cd pollution. Cd can trigger serious diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) by the over-activating immune system. As an effector mechanism in innate immunity, neutrophil extracellular traps (NETs) not only play an important role in defending against infection but also lead to tissue damage. However, the role of NETs in Cd-induced lung damage process has not been previously studied. In this study, we aimed to investigate the potential effects of Cd-induced NETs on lung injury in vivo and further to clarify the molecular mechanisms of Cd-induced NETs formation. In vivo, Cd treatment destroyed the structural integrity of lung tissue and significantly increased the levels of NETs in the bronchoalveolar lavage fluid (BALF). The known NETs inhibitor DNase I ameliorated pathologic changes and significantly decreased levels of NETs in BALF, which suggesting the curial role of NETs in Cd-induced lung injury. Further investigation showed that Cd could significantly trigger NETs formation, which is composed of DNA backbone decorated with histones (H3) and neutrophils elastase (NE). The inhibitors of NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways significantly reduced the formation of NETs, and western blotting analysis also showed that Cd significantly increased the phosphorylation of p38 and ERK1/2 signaling pathways. Above results confirmed that NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways were related to Cd-induced NETs formation. In conclusion, NETs was involved in Cd-induced lung injury, and the mechanisms of Cd-induced NETs formation was via activating NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways, which might provide a new perspective in Cd-induced lung injury.
Collapse
Affiliation(s)
- Chaoqun Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin province, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin province, PR China
| | - Yanan Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin province, PR China
| | - Quan Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
29
|
Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL. Neutrophils in Psoriasis. Front Immunol 2019; 10:2376. [PMID: 31649677 PMCID: PMC6794444 DOI: 10.3389/fimmu.2019.02376] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant innate immune cells. The pathogenic roles of neutrophils are related to chronic inflammation and autoimmune diseases. Psoriasis is a chronic systemic inflammatory disease affecting ~2–3% of the world population. The abundant presence of neutrophils in the psoriatic skin lesions serves as a typical histopathologic hallmark of psoriasis. Recent reports indicated that oxidative stress, granular components, and neutrophil extracellular traps from psoriatic neutrophils are related to the initial and maintenance phases of psoriasis. This review provides an overview on the recent (up to 2019) advances in understanding the role of neutrophils in the pathophysiology of psoriasis, including the effects of respiratory burst, degranulation, and neutrophil extracellular trap formation on psoriatic immunity and the clinical relationships.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Supervisor Board, Taoyuan Chinese Medicine Association, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
30
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
31
|
Non-type 2 inflammation in severe asthma is propelled by neutrophil cytoplasts and maintained by defective resolution. Allergol Int 2019; 68:143-149. [PMID: 30573389 DOI: 10.1016/j.alit.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
Asthma is a highly prevalent heterogeneous inflammatory disorder of the airways. Not all patients respond to anti-inflammatory treatment with corticosteroids, leading to significant morbidity in severe asthma. Much attention has been paid to defining the cellular and molecular mechanisms of type 2 inflammation that are operative in asthma. Development of targeted therapies for pathologic type 2 inflammation is opening a new approach to asthma treatment; however, not all asthmatics have type 2 airway inflammation, especially those with severe corticosteroid-refractory asthma. Much less is known about non-type 2 immunological mechanisms in asthma. In health, inflammation triggers resolution mechanisms that control immune (type 1 and type 2) responses and enable the restoration of tissue homeostasis. The resolution response is comprised of cellular and molecular events, including production of specialized pro-resolving mediators (SPMs). SPMs halt leukocyte recruitment, promote macrophage efferocytosis, and restore epithelial barrier integrity, all of which are critical to resolution of inflammation in the lungs. Here, we review recent insights into the disruption of these homeostatic mechanisms and their contributions to non-type 2 inflammation in severe asthma immunopathogenesis.
Collapse
|
32
|
Santos A, Martín P, Blasco A, Solano J, Cózar B, García D, Goicolea J, Bellas C, Coronado M. NETs detection and quantification in paraffin embedded samples using confocal microscopy. Micron 2018; 114:1-7. [DOI: 10.1016/j.micron.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
|
33
|
Icduygu FM, Erdogan MO, Ulasli SS, Yildiz HG, Celik ZS, Unlu M, Solak M. Is There an Association Between NOD2 Gene Polymorphisms and Chronic Obstructive Pulmonary Disease Progression? INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1351118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fadime Mutlu Icduygu
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun, 28100, Turkey
| | - Mujgan Ozdemir Erdogan
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Sevinc Sarinc Ulasli
- Department of Pulmonary Diseases, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Handan Gonenli Yildiz
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Zeynep Sonmez Celik
- Department of Pulmonary Diseases, Eskisehir State Hospital, Eskisehir, 26060 Turkey
| | - Mehmet Unlu
- Department of Pulmonary Diseases, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Mustafa Solak
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| |
Collapse
|