1
|
Wu J, Huang H, Tu M, Yu H, Wei T, Huang X, Jia Y, Mo T, Li Y, Zhang H. Acute toxicological study: EZY-1 with potent therapeutic effects of idiopathic pulmonary fibrosis and its mechanisms. J Food Biochem 2022; 46:e14483. [PMID: 36226766 DOI: 10.1111/jfbc.14483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023]
Abstract
EZY-1 is an antifibrosis peptide purified from Eucheuma. In this study, we explored the acute toxicology of EZY-1 and the signaling pathways involved in its antifibrotic role. The mouse model of pulmonary fibrosis was induced by bleomycin. Pathological changes in lung tissue could be effectively inhibited by EZY-1. Acute toxicity and cell proliferation tests indicated that EZY-1 had no apparent toxicity to mice and cells. We identified proteins that could bind directly to EZY-1 in vitro on the basis of liquid chromatography-tandem mass spectrometry and bioinformatics analysis. EZY-1 inhibited pulmonary fibrosis via Wnt/β-catenin, transforming growth factor (TGF)-β/Smad, phosphoinositide 3-kinase/protein kinase B/ mammalian target of rapamycin, and activator of transcription 3 and Janus kinase 2/signal transducer pathways. A transwell micropore experiment showed that EZY-1 could inhibit cell migration and invasion. Western blotting analysis on transforming growth factor-β1 (TGF-β1)-induced A549 pulmonary fibrosis cell model suggested that EZY-1 could downregulate p-Smad3 (Ser423/Ser425), Smad4, β-catenin, vimentin, and N-cadherin expression. ELISA showed that EZY-1 could inhibit collagen-I secretion. EZY-1 alleviated idiopathic pulmonary fibrosis (IPF) through regulating TGF-β/Smad pathways, epithelial-mesenchymal transition processes, and collagen secretion, which provides a potential foundation for theoretical development of EZY-1 as a potential drug against IPF. PRACTICAL APPLICATIONS: We isolated a new 16-amino-acid peptide derived from the polypeptide extract of Eucheuma, named EZY-1. In vitro and in vivo assays show peptide EZY-1 is safe. The EZY-1 peptide alleviates IPF at lower doses than pirfenidone. EZY-1 alleviated idiopathic pulmonary fibrosis (IPF) through regulating TGF-β/Smad pathways, epithelial-mesenchymal transition (EMT) processes, and collagen secretion, which provides a theoretical basis for the development of EZY-1 as a potential drug against IPF.
Collapse
Affiliation(s)
- Jun Wu
- Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Hui Huang
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Mingjin Tu
- Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huajun Yu
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,Laboratory Animal Centre, Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqin Huang
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Ting Mo
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Yuanqi Li
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Haitao Zhang
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
2
|
Sunkari S, Thatikonda S, Pooladanda V, Challa VS, Godugu C. Protective effects of ambroxol in psoriasis like skin inflammation: Exploration of possible mechanisms. Int Immunopharmacol 2019; 71:301-312. [PMID: 30933843 DOI: 10.1016/j.intimp.2019.03.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to investigate the protective effects of ambroxol in psoriasis-like skin inflammation both in vitro and in vivo and delineate the molecular mechanism of ambroxol. Our data demonstrated that ambroxol has an imperative role in inhibiting the lipopolysaccharide (LPS) stimulated nitrite levels, total cellular and mitochondrial reactive oxygen species level which was determined by Griess assay, DCFDA, and MitoSOX Red staining, respectively. We found that ambroxol remarkably reduced imiquimod (IMQ) induced epidermal hyperplasia, psoriasis area and severity index (PASI) scoring, splenomegaly, skin, and ear fold thickness. In addition, the histopathological evaluation revealed that ambroxol topical and subcutaneous treatment eloquently reduced psoriasiform lesions including acanthosis. Moreover, with ambroxol intervention, the levels of antioxidants glutathione (GSH), superoxide dismutase (SOD), and IL-10 were found to be increased along with a reduction in nitrite levels in skin tissues. On the other hand, ambroxol treatment significantly reduced imiquimod-induced levels of inflammatory cytokines such as IL-1β, IL-6, IL-17, IL-22, IL-23, TGF-β, and TNF-α. Furthermore, from immunoblotting, we found a decrease in the protein expression of nitrotyrosine, iNOS, NF-κB and MAPKs signaling cascade with a concomitant increase in the expression of Nrf-2 and SOD-1 in RAW 264.7 cells and skin tissues by ambroxol. Similar findings were observed by immunofluorescence in macrophages. Moreover, ambroxol downregulated the ICAM-1 and Ki67 expression observed in skin tissues. Collectively, our results demonstrate that ambroxol may have intriguing therapeutic possibilities in attenuating psoriasis.
Collapse
Affiliation(s)
- Shruthi Sunkari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Veerabhadra Swamy Challa
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
3
|
Ge LT, Liu YN, Lin XX, Shen HJ, Jia YL, Dong XW, Sun Y, Xie QM. Inhalation of ambroxol inhibits cigarette smoke-induced acute lung injury in a mouse model by inhibiting the Erk pathway. Int Immunopharmacol 2016; 33:90-8. [DOI: 10.1016/j.intimp.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/28/2023]
|