1
|
Kumar N, Suman SK, Guleria M, Kolay S, Amirdhanayagam J, Chakraborty A, Rakshit S, Mukherjee A, Das T. Chlorambucil Conjugation Enhances the Potency of Rituximab: Synthesis and Evaluation of the Novel [ 177Lu]Lu-Labeled Rituximab-Chlorambucil Conjugate toward Therapy of Non-Hodgkin's Lymphoma. J Med Chem 2025; 68:1365-1381. [PMID: 39807673 DOI: 10.1021/acs.jmedchem.4c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In this study, a novel antibody-drug conjugate (ADC) consisting of Rituximab and Chlorambucil (Rituximab-CMB) was synthesized. The average number of drug molecules attached per Rituximab molecule was determined using MALDI-TOF mass spectrometry, revealing a range of 4-6 drug molecules per antibody. To further improve the therapeutic potential of the ADC, it was radiolabeled with the therapeutic radionuclide 177Lu via a DOTA chelator, achieving a final radiochemical purity of over 95%. In vitro assays demonstrated that the Rituximab-CMB conjugate had greater cytotoxicity compared to that of both unconjugated Rituximab and Chlorambucil alone. Moreover, [177Lu]Lu-labeled-Rituximab-CMB (15.67 MBq/mg) exhibited higher radiotoxicity (37.08 ± 1.40% cell death) compared to [177Lu]Lu-labeled-Rituximab (83.99 MBq/mg) (25.25 ± 0.8% cell death) when administered at similar radioactivity doses. Ex vivo experiments indicated that coinjecting cold Rituximab with the radiolabeled formulations significantly improved tumor accumulation and reduced nontarget organ uptake. SPECT-CT imaging results supported these findings, further confirming the enhanced tumor-targeting and biodistribution of the radiolabeled ADC.
Collapse
Affiliation(s)
- Naveen Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Soumi Kolay
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Medicine Centre, Parel, Mumbai 400012, India
| | - Sutapa Rakshit
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Medicine Centre, Parel, Mumbai 400012, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Karczmarczyk U, Sawicka A, Garnuszek P, Maurin M, Wojdowska W. Does the Number of Bifunctional Chelators Conjugated to a mAb Affect the Biological Activity of Its Radio-Labeled Counterpart? Discussion Using the Example of mAb against CD-20 Labeled with 90Y or 177Lu. J Med Chem 2022; 65:6419-6430. [PMID: 35442675 PMCID: PMC9109692 DOI: 10.1021/acs.jmedchem.1c02044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There has been considerable interest in developing a monoclonal antibody (mAb) against-CD-20 (for example, Rituximab) modified by bifunctional chelating agents (BCA) for non-Hodgkin's lymphoma radioimmunotherapy. Therefore, many researchers have modified this monoclonal antibody by attaching different BCA moieties and evaluated their biological activities in terms of in vitro study and in vivo study in healthy and tumor xenografted rodents. This mini-perspective reviews the in vitro studies, the immunoreactivity and physiological distribution studies: organ-to-blood and the tumor-to-organ ratio of conjugates with different numbers of chelators per mAb. We set up a null hypothesis that states there is no statistical significance between the biological activity of monoclonal antibody (Rituximab) and the number of conjugated bifunctional chelators. Overall, we have concluded that there is no strong evidence for this hypothesis. However, the literature data should be questioned due to the potential lack of uniform study methodology.
Collapse
Affiliation(s)
- Urszula Karczmarczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock 05-400, Poland
| | - Agnieszka Sawicka
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock 05-400, Poland
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock 05-400, Poland
| | - Michał Maurin
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock 05-400, Poland
| | - Wioletta Wojdowska
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock 05-400, Poland
| |
Collapse
|
3
|
Zhu X, Miao X, Qin X, Zhu X. Design of immunogens: The effect of bifunctional chelator on immunological response to chelated copper. J Pharm Biomed Anal 2019; 174:263-269. [PMID: 31181489 DOI: 10.1016/j.jpba.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/03/2023]
Abstract
To produce specific antibodies for the detection and quantification of copper ions, bifunctional chelators (BFCs) are commonly applied in the preparation of copper conjugates. However, some copper-chelator complexes exhibit limited stability under in vivo conditions. In this study, Cu2+ was coupled with carrier proteins via three different macrocyclic BFCs: p-SCN-Bn-DOTA, p-SCN-Bn-NOTA, and p-SCN-Bn-TETA. The stability in plasma and the immunogenicity of three copper immunoconjugates were compared. The chelators other than p-SCN-Bn-DOTA were very stable in plasma, with <9% dissociation of Cu2+ over 96 h. The immune response varied depending on the choice of chelator; notably, antisera from the Cu2+-NOTA-KLH conjugate demonstrated the best reactivity toward chelated Cu2+. p-SCN-Bn-NOTA, which showed significant advantages over the other chelators, was used for antibody production. The efficiency of immune-positive hybridoma production was satisfactory, and the resultant monoclonal antibodies (McAbs) 4B7 showed sensitivity (half-maximal inhibitory concentration (IC50) of 8.9 ng/mL) to chelated Cu2+, with a working range from 1.21 to 48.9 ng/mL. The recovery of Cu2+ from water samples was 85.7-108%, and the intra- and inter-assay coefficients of variation were 4.0-10.1% and 7.1-11.4%, respectively. Compared with previously reported McAb specific to Cu2+, DF4, the sensitivity of the newly developed assay was improved 100-fold. The results of this study indicate the utility of NOTA for the efficient generation of highly sensitive McAbs against Cu2+.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- School of Public Health, Nantong University, No.9 Seyuan Road Nantong, Jiangsu, 226019, China.
| | - Xiaye Miao
- School of Public Health, Nantong University, No.9 Seyuan Road Nantong, Jiangsu, 226019, China
| | - Xinyue Qin
- School of Public Health, Nantong University, No.9 Seyuan Road Nantong, Jiangsu, 226019, China
| | - Xiaohong Zhu
- Department of Infectious Disease, Division 2nd, the Third People's Hospital of Nantong, Jiangsu, 226006, China.
| |
Collapse
|
4
|
Eskian M, Khorasanizadeh M, Zinzani PL, Illidge TM, Rezaei N. Novel Methods to Improve the Efficiency of Radioimmunotherapy for Non-Hodgkin Lymphoma. Int Rev Immunol 2019; 38:79-91. [PMID: 30931651 DOI: 10.1080/08830185.2019.1588266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radioimmunotherapy (RIT) is a novel strategy for treating non-Hodgkin lymphoma (NHL). Several studies have shown the promising results of using RIT in NHL, which have led to FDA approval for two RIT agents in treating low grade NHL. In spite of these favorable results in low-grade NHL, most of the aggressive or relapsed/refractory NHL subjects experience relapses following RIT. Although more aggressive treatments such as myeloablative doses of RIT followed by stem cell transplantation appear to be able to provide a longer survival for some patients these approaches are associated with significant treatment-related adverse events and challenging to deliver in most centers. Therefore, it seems reasonable to develop treatment approaches that enhance the efficiency of RIT, while reducing its toxicity. In this paper, novel methods that improve the efficiency of RIT and reduce its toxicity through various mechanisms are reviewed. Further clinical development of these methods could expand the NHL patient groups eligible for receiving RIT, and even extend the use of RIT to new indications and disease groups in future.
Collapse
Affiliation(s)
- Mahsa Eskian
- a Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,b Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - MirHojjat Khorasanizadeh
- a Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,b Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Pier Luigi Zinzani
- c Institute of Hematology "L. e A. Seràgnoli", University of Bologna , Bologna , Italy
| | - Tim M Illidge
- d Manchester Academic Health Sciences Centre, University of Manchester, Christie NHS Foundation Trust , Manchester , UK
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,e Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
5
|
Bokhari TH, Butt MB, Hina S, Iqbal M, Daud M, Imran M. A review on 90Y-labeled compounds and biomolecules. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5622-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Development of 68Ga labeled human serum albumin for blood pool imaging: a comparison between two ligands. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5320-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|