1
|
Osborne D, Lattanze R, Knowland J, Bryant TE, Barvi I, Fu Y, Kiser JW. The Scientific and Clinical Case for Reviewing Diagnostic Radiopharmaceutical Extravasation Long-Standing Assumptions. Front Med (Lausanne) 2021; 8:684157. [PMID: 34262915 PMCID: PMC8273265 DOI: 10.3389/fmed.2021.684157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The patient benefit from a diagnostic nuclear medicine procedure far outweighs the associated radiation risk. This benefit/risk ratio assumes a properly administered radiopharmaceutical. However, a significant diagnostic radiopharmaceutical extravasation can confound the procedure in many ways. We identified three current extravasation hypotheses espoused by medical societies, advisory committees, and hundreds of individual members of the nuclear medicine community: diagnostic extravasations do not cause harm, do not result in high absorbed dose to tissue, and require complex dosimetry methods that are not readily available in nuclear medicine centers. We tested these hypotheses against a framework of current knowledge, recent developments, and original research. We conducted a literature review, searched regulatory databases, examined five clinical cases of extravasated patients, and performed dosimetry on those extravasations to test these globally accepted hypotheses. Results: A literature review found 58 peer-reviewed documents suggesting patient harm. Adverse event/vigilance report database reviews for extravasations were conducted and revealed 38 adverse events which listed diagnostic radiopharmaceutical extravasation as a factor, despite a regulatory exemption for required reporting. In our own case material, assessment of care was evaluated for five extravasated patients who underwent repeat imaging. Findings reflected results of literature review and included mis- or non-identification of lesions, underestimation of Standardized Uptake Values (SUVs) by 19-73%, classification of scans as non-diagnostic, and the need to repeat imaging with the associated additional radiation exposure, inconvenience, or delays in care. Dosimetry was performed for the same five cases of diagnostic radiopharmaceutical extravasation. Absorbed doses to 5 cm3 of tissue were between 1.1 and 8.7 Gy, and shallow dose equivalent for 10 cm2 of skin was as high as 4.2 Sv. Conclusions: Our findings suggest that significant extravasations can or have caused patient harm and can irradiate patients' tissue with doses that exceed medical event reporting limits and deterministic effect thresholds. Therefore, diagnostic radiopharmaceutical injections should be monitored, and dosimetry of extravasated tissue should be performed in certain cases where thresholds are thought to have been exceeded. Process improvement efforts should be implemented to reduce the frequency of extravasation in nuclear medicine.
Collapse
Affiliation(s)
- Dustin Osborne
- Radiology Department, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | | | | | | | - Iryna Barvi
- Lucerno Dynamics LLC, Cary, NC, United States
| | - Yitong Fu
- Radiology Department, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Jackson W. Kiser
- Department of Molecular Imaging, Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
2
|
Wong TZ, Benefield T, Masters S, Kiser JW, Crowley J, Osborne D, Mawlawi O, Barnwell J, Gupta P, Mintz A, Ryan KA, Perrin SR, Lattanze RK, Townsend DW. Quality Improvement Initiatives to Assess and Improve PET/CT Injection Infiltration Rates at Multiple Centers. J Nucl Med Technol 2019; 47:326-331. [PMID: 31182666 PMCID: PMC6894099 DOI: 10.2967/jnmt.119.228098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
PET/CT radiotracer infiltration is not uncommon and is often outside the imaging field of view. Infiltration can negatively affect image quality, image quantification, and patient management. Until recently, there has not been a simple way to routinely practice PET radiopharmaceutical administration quality control and quality assurance. Our objectives were to quantify infiltration rates, determine associative factors for infiltration, and assess whether rates could be reduced at multiple centers and then sustained. Methods: A “design, measure, analyze, improve, and control” quality improvement methodology requiring novel technology was used to try to improve PET/CT injection quality. Teams were educated on the importance of quality injections. Baseline infiltration rates were measured, center-specific associative factors were analyzed, team meetings were held, improvement plans were established and executed, and rates remeasured. To ensure that injection-quality gains were retained, real-time feedback and ongoing monitoring were used. Sustainability was assessed. Results: Seven centers and 56 technologists provided data on 5,541 injections. The centers’ aggregated baseline infiltration rate was 6.2% (range, 2%–16%). On the basis of their specific associative factors, 4 centers developed improvement plans and reduced their aggregated infiltration rate from 8.9% to 4.6% (P < 0.0001). Ongoing injection monitoring showed sustainability. Significant variation was found in center- and technologist-level infiltration rates (P < 0.0001 and P = 0.0020, respectively). Conclusion: A quality improvement approach with new technology can help centers measure infiltration rates, determine associative factors, implement interventions, and improve and sustain injection quality. Because PET/CT images help guide patient management, the monitoring and improvement of radiotracer injection quality are important.
Collapse
Affiliation(s)
- Terence Z Wong
- Duke University, Durham, North Carolina.,University of North Carolina, Chapel Hill, North Carolina
| | - Thad Benefield
- University of North Carolina, Chapel Hill, North Carolina
| | - Shane Masters
- Wake Forest Baptist Medical Center, Winston Salem, North Carolina
| | | | | | - Dustin Osborne
- Radiology/Molecular Imaging and Translational Research, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Osama Mawlawi
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas
| | | | - Pawan Gupta
- Division of Nuclear Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA Health, Los Angeles, California
| | - Akiva Mintz
- Columbia University Medical Center, New York, New York
| | | | | | | | | |
Collapse
|
3
|
Knowland J, Lipman S, Lattanze R, Kingg J, Ryan K, Perrin S. Technical Note: Characterization of technology to detect residual injection site radioactivity. Med Phys 2019; 46:2690-2695. [PMID: 30972762 PMCID: PMC6850203 DOI: 10.1002/mp.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 04/03/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Each year in the United States, approximately 18.5 million nuclear medicine procedures are performed. Various quality control measures are implemented to reduce image errors and improve quantification of radiotracer distribution. However, there is currently no routine or timely feedback about the quality of the radiotracer injection. One potential solution to evaluate the injection quality is to place a topical scintillation sensor near the injection site to record the presence of residual activity. This work investigates a sensor design for identification of injections where the prescribed radioactive activity is not fully delivered into the patient's circulation (an infiltration). METHODS The sensor consists of a single unshielded bismuth germanate (BGO) crystal (3 mm × 3 mm × 3 mm). Using radioactive sources with gamma energies that span the range commonly used in nuclear medicine, we quantified energy resolution and linearity. Additionally, we computed sensitivity by comparing the calculated incident activity to the activity measured by the sensor. Sensor output linearity was calculated by comparing measured data against the radioactive decay of a source over multiple half-lives. The sensor incorporates internal temperature feedback used to compensate for ambient temperature fluctuations. We investigated the performance of this compensation over the range of 15°C-35°C. RESULTS Energy spectra from four sensors were used to calculate the energy resolution: 67% for 99m Tc (141 keV), 67% for 133 Ba (344 keV), 42% for 18 F (511 keV), and 32% for 137 Cs (662 keV). Note that the energy used for 133 Ba is a weighted average of the three photon emissions nearest to the most abundant (356 keV). Sensor energy response was linear with a difference of 1%-2% between measured and predicted values. Energy-dependent detector sensitivity, defined as the ratio of measured photons to incident photons for a given isotope, decreased with increasing photon energy from 55.4% for 99m Tc (141 keV) to 3.3% for 137 Cs (662 keV). Without compensation, error due to temperature change was as high as 53%. Temperature compensation reduced the error to less than 1.4%. Sensor output linearity was tested to as high as 210 kcps and the maximum magnitude error was 4%. CONCLUSIONS The performance of the sensor was adequate for identification of excessive residual activity at an injection site. Its ability to provide feedback may be useful as a quality control measure for nuclear medicine injections.
Collapse
Affiliation(s)
| | | | - Ron Lattanze
- Lucerno Dynamics, LLC140 Towerview CtCaryNC27513USA
| | - Jesse Kingg
- Lucerno Dynamics, LLC140 Towerview CtCaryNC27513USA
| | - Kelley Ryan
- Lucerno Dynamics, LLC140 Towerview CtCaryNC27513USA
| | | |
Collapse
|
4
|
Consequences of radiopharmaceutical extravasation and therapeutic interventions: a systematic review. Eur J Nucl Med Mol Imaging 2017; 44:1234-1243. [PMID: 28303300 PMCID: PMC5434120 DOI: 10.1007/s00259-017-3675-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Abstract
Purpose Radiopharmaceutical extravasation can potentially lead to severe soft tissue damage, but little is known about incidence, medical consequences, possible interventions, and effectiveness of these. The aims of this study are to estimate the incidence of extravasation of diagnostic and therapeutic radiopharmaceuticals, to evaluate medical consequences, and to evaluate medical treatment applied subsequently to those incidents. Methods A sensitive and elaborate literature search was performed in Embase and PubMed using the keywords “misadministration”, “extravasation”, “paravascular infiltration”, combined with “tracer”, “radionuclide”, “radiopharmaceutical”, and a list of keywords referring to clinically used tracers (i.e. “Technetium-99m”, “Yttrium-90”). Reported data on radiopharmaceutical extravasation and applied interventions was extracted and summarised. Results Thirty-seven publications reported 3016 cases of diagnostic radiopharmaceutical extravasation, of which three cases reported symptoms after extravasation. Eight publications reported 10 cases of therapeutic tracer extravasation. The most severe symptom was ulceration. Thirty-four different intervention and prevention strategies were performed or proposed in literature. Conclusions Extravasation of diagnostic radiopharmaceuticals is common. 99mTc, 123I, 18F, and 68Ga labelled tracers do not require specific intervention. Extravasation of therapeutic radiopharmaceuticals can give severe soft tissue lesions. Although not evidence based, surgical intervention should be considered. Furthermore, dispersive intervention, dosimetry and follow up is advised. Pharmaceutical intervention has no place yet in the immediate care of radiopharmaceutical extravasation.
Collapse
|
5
|
Lee JJ, Chung JH, Kim SY. Effect of (18)F-fluorodeoxyglucose extravasation on time taken for tumoral uptake to reach a plateau: animal and clinical PET analyses. Ann Nucl Med 2016; 30:525-33. [PMID: 27256404 DOI: 10.1007/s12149-016-1090-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The present study aimed to investigate the effect of (18)F-fluorodeoxyglucose (FDG) extravasation on the time taken for tumoral uptake to reach a plateau. METHODS For the animal experiment, FDG extravasation was conducted in the tails of HCT116 tumor-bearing xenograft mice models in three groups (no extravasation, 40 % extravasation, and 80 % extravasation; n = 5, each). Dynamic positron emission tomography (PET) images were acquired over a period of 2 h following injection. Time-activity curves for FDG in the tails and tumors were calculated. For the clinical experiment, 22 patients (male:female, 14:8; age range, 70.8 ± 9.2 years) were subjected to PET/computed tomography (PET/CT) 1 h after the injection of FDG. The inclusion criteria were as follows: (1) submitted to both whole-body and subsequent regional scanning; (2) entire extravasation activity visualized in the whole-body images; (3) tumor visualized on both whole-body and additional regional images; and (4) status of tumor either confirmed by biopsy or clinically suspected for malignancy. The standardized uptake values (SUVs) of the tumors (on the whole-body and additional PET images) and extravasation sites were recorded. RESULTS There were no significant differences in the time taken for tumoral uptake to reach a plateau and that to reach minimum activity at the extravasation site among the three groups of mice. However, the mean tumoral activity and activity at the extravasation site were negatively correlated at 1 h post-injection. According to the clinical PET findings, the differences in SUV between the whole-body and regional images were not significantly correlated with the interval between injection of FDG and start of whole-body scanning, interval between the start of whole-body scanning and start of regional scanning, extravasation volume, maximum SUV of the extravasation site, or total activity at the extravasation site. CONCLUSIONS The time taken for tumoral uptake to reach a plateau is not affected by extravasation, even at extensive degrees. Thus, in routine practice, the imaging time of approximately 60 min post-injection need not be modified even if extravasation is identified. However, tumor SUV may be underestimated in cases of extravasation.
Collapse
Affiliation(s)
- Jong Jin Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan, College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Jin Hwa Chung
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Seog-Young Kim
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, Korea.,Department of Medicine, University of Ulsan, College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Gámez-Cenzano C, Pino-Sorroche F. Standardization and Quantification in FDG-PET/CT Imaging for Staging and Restaging of Malignant Disease. PET Clin 2014; 9:117-27. [DOI: 10.1016/j.cpet.2013.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|