1
|
Sahu MS, Purushotham R, Kaur R. The Hog1 MAPK substrate governs Candida glabrata-epithelial cell adhesion via the histone H2A variant. PLoS Genet 2024; 20:e1011281. [PMID: 38743788 PMCID: PMC11125552 DOI: 10.1371/journal.pgen.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/24/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
CgHog1, terminal kinase of the high-osmolarity glycerol signalling pathway, orchestrates cellular response to multiple external stimuli including surplus-environmental iron in the human fungal pathogen Candida glabrata (Cg). However, CgHog1 substrates remain unidentified. Here, we show that CgHog1 adversely affects Cg adherence to host stomach and kidney epithelial cells in vitro, but promotes Cg survival in the iron-rich gastrointestinal tract niche. Further, CgHog1 interactome and in vitro phosphorylation analysis revealed CgSub2 (putative RNA helicase) to be a CgHog1 substrate, with CgSub2 also governing iron homeostasis and host adhesion. CgSub2 positively regulated EPA1 (encodes a major adhesin) expression and host adherence via its interactor CgHtz1 (histone H2A variant). Notably, both CgHog1 and surplus environmental iron had a negative impact on CgSub2-CgHtz1 interaction, with CgHTZ1 or CgSUB2 deletion reversing the elevated adherence of Cghog1Δ to epithelial cells. Finally, the surplus-extracellular iron led to CgHog1 activation, increased CgSub2 phosphorylation, elevated CgSub2-CgHta (canonical histone H2A) interaction, and EPA1 transcriptional activation, thereby underscoring the iron-responsive, CgHog1-induced exchange of histone partners of CgSub2. Altogether, our work mechanistically defines how CgHog1 couples Epa1 adhesin expression with iron abundance, and point towards specific chromatin composition modification programs that probably aid fungal pathogens align their adherence to iron-rich (gut) and iron-poor (blood) host niches.
Collapse
Affiliation(s)
- Mahima Sagar Sahu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rajaram Purushotham
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
2
|
Kumar K, Pareek A, Kaur R. SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 2024; 27:109607. [PMID: 38632999 PMCID: PMC11022050 DOI: 10.1016/j.isci.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Immune evasion is critical for fungal virulence. However, how the human opportunistic pathogen Candida glabrata (Cg) accomplishes this is unknown. Here, we present the first genome-wide nucleosome map of the macrophage-internalized Cg consisting of ∼12,000 dynamic and 70,000 total nucleosomes. We demonstrate that CgSnf2 (SWI/SNF chromatin remodeling complex-ATPase subunit)-mediated chromatin reorganization in macrophage-internalized Cg upregulates and downregulates the immunosuppressive seven-gene mannosyltransferase-cluster (CgMT-C) and immunostimulatory cell surface adhesin-encoding EPA1 gene, respectively. Consistently, EPA1 overexpression and CgMT-C deletion elevated IL-1β (pro-inflammatory cytokine) production and diminished Cg proliferation in macrophages. Further, Cgsnf2Δ had higher Epa1 surface expression, and evoked increased IL-1β secretion, and was killed in macrophages. Akt-, p38-, NF-κB- or NLRP3 inflammasome-inhibition partially reversed increased IL-1β secretion in Cgsnf2Δ-infected macrophages. Importantly, macrophages responded to multiple Candida pathogens via NF-κB-dependent IL-1β production, underscoring NF-κB signaling's role in fungal diseases. Altogether, our findings directly link the nucleosome positioning-based chromatin remodeling to fungal immunomodulatory molecule expression.
Collapse
Affiliation(s)
- Kundan Kumar
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Aditi Pareek
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
3
|
Ramesh S, Madduri M, Rudramurthy SM, Roy U. Functional Characterization of a Bacillus-Derived Novel Broad-Spectrum Antifungal Lipopeptide Variant against Candida tropicalis and Candida auris and Unravelling Its Mode of Action. Microbiol Spectr 2023; 11:e0158322. [PMID: 36744953 PMCID: PMC10100908 DOI: 10.1128/spectrum.01583-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/22/2022] [Indexed: 02/07/2023] Open
Abstract
Limited treatment options, recalcitrance, and resistance to existing therapeutics encourage the discovery of novel antifungal leads for alternative therapeutics. Antifungal lipopeptides have emerged as potential candidates for developing new and alternative antifungal therapies. In our previous studies, we isolated and identified the lipopeptide variant AF4 and purified it to homogeneity via chromatography from the cell-free supernatant of Bacillus subtilis. AF4 was found to have broad-spectrum antifungal activity against more than 110 fungal isolates. In this study, we found that clinical isolates of Candida tropicalis and Candida auris exposed to AF4 exhibited low MICs of 4 to 8 mg/L. Time-kill assays indicated the in vitro pharmacodynamic potential of AF4. Biocompatibility assays demonstrated ~75% cell viability at 8 mg/L of AF4, indicating the lipopeptide's minimally cytotoxic nature. In lipopeptide-treated C. tropicalis and C. auris cells, scanning electron microscopy revealed damage to the cell surface, while confocal microscopy with acridine orange(AO)/propidium iodide (PI) and FUN-1 indicated permeabilization of the cell membrane, and DNA damage upon DAPI (4',6-diamidino-2-phenylindole) staining. These observations were corroborated using flow cytometry (FC) in which propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and rhodamine 123 (Rh123) staining of cells treated with AF4 revealed loss of membrane integrity, increased reactive oxygen species (ROS) production, and mitochondrial membrane dysfunction, respectively. Membrane perturbation was also observed in the 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence study and the interaction with ergosterol was observed by an ergosterol binding assay. Decreased membrane dipole potential also indicated the probable binding of lipopeptide to the cell membrane. Collectively, these findings describe the mode of action of AF4 against fungal isolates by membrane disruption and ROS generation, demonstrating its antifungal potency. IMPORTANCE C. tropicalis is a major concern for candidiasis in India and C. auris has emerged as a resistant yeast causing difficult-to-treat infections. Currently, amphotericin B (AMB) and 5-flucytosine (5-FC) are the main therapeutics for systemic fungal infections; however, the nephrotoxicity of AMB and resistance to 5-FC is a serious concern. Antifungal lead molecules with low adverse effects are the need of the hour. In this study, we briefly describe the antifungal potential of the AF4 lipopeptide and its mode of action using microscopy, flow cytometry, and fluorescence-based assays. Our investigation reveals the basic mode of action of the investigated lipopeptide. This lipopeptide with broad-spectrum antifungal potency is apparently membrane-active, and there is a smaller chance that organisms exposed to such a compound will develop drug resistance. It could potentially act as a lead molecule for the development of an alternative antifungal agent to combat candidiasis.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| | - Madhuri Madduri
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
4
|
Qadir MI, Bashir H, Ahmad MH. Human Oropharyngeal Candidiasis: From Etiology to Current Treatment. Crit Rev Immunol 2023; 43:15-24. [PMID: 37824374 DOI: 10.1615/critrevimmunol.2023049730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral candidiasis is a common but most harmful oral cavity infection caused by yeast-like fungus, this condition is called Oropharyngeal candidiasis. There are various species of candida that are responsible for oral cavity fungal infection including mostly Candida albicans. Different candida infections may be acute and chronic. Cell-mediated immunity, humoral immunity, and granulocytes are the immune factors for the cause of this infection. Different antifungal drugs like nystatin, fluconazole, and amphotericin are used to treat oral cavity fungal infections.
Collapse
Affiliation(s)
- Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hina Bashir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakaria University, Multan, Pakistan
| | - Muhammad Hammad Ahmad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
5
|
Antifungal Resistance in Clinical Isolates of Candida glabrata in Ibero-America. J Fungi (Basel) 2021; 8:jof8010014. [PMID: 35049954 PMCID: PMC8781625 DOI: 10.3390/jof8010014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
In different regions worldwide, there exists an intra-and inter-regional variability in the rates of resistance to antifungal agents in Candida glabrata, highlighting the importance of understanding the epidemiology and antifungal susceptibility profiles of C. glabrata in each region. However, in some regions, such as Ibero-America, limited data are available in this context. Therefore, in the present study, a systematic review was conducted to determine the antifungal resistance in C. glabrata in Ibero-America over the last five years. A literature search for articles published between January 2015 and December 2020 was conducted without language restrictions, using the PubMed, Embase, Cochrane Library, and LILACS databases. The search terms that were used were "Candida glabrata" AND "antifungal resistance" AND "Country", and 22 publications were retrieved from different countries. The use of azoles (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, ketoconazole, and miconazole) varied between 4.0% and 100%, and that of echinocandins (micafungin, caspofungin, and anidulafungin) between 1.1% and 10.0%. The limited information on this subject in the region of Ibero-America emphasizes the need to identify the pathogens at the species level and perform antifungal susceptibility tests that may lead to the appropriate use of these drugs and the optimal doses in order to avoid the development of antifungal resistance or multi-resistance.
Collapse
|
6
|
Kaur H, Singh S, Rudramurthy SM, Ghosh AK, Jayashree M, Narayana Y, Ray P, Chakrabarti A. Candidaemia in a tertiary care centre of developing country: Monitoring possible change in spectrum of agents and antifungal susceptibility. Indian J Med Microbiol 2020; 38:110-116. [PMID: 32719217 DOI: 10.4103/ijmm.ijmm_20_112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Purpose Candidaemia is a major cause of morbidity and mortality of hospitalised patients, especially in developing countries. This study was conducted to monitor any change in species distribution and antifungal susceptibility pattern of Candida species causing candidaemia over the last 20 years. Materials and Methods The candidaemia cases reported during January 1999 and December 2018 at our centre were reviewed. The yeasts were identified by phenotypic characters (during 1999-2014) and matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) (during 2014-2018). Antifungal susceptibility testing (AFST) was performed in accordance with the Clinical and Laboratory Standards Institute guidelines. Results A total of 602,963 blood samples from patients with suspected sepsis were processed. Candidaemia was diagnosed in 7927 (1.31%) cases. The frequency of cases rose significantly (P = 0.000) in the last quarter of the study. Candida tropicalis (40.1%) was the most common species, followed by Candida albicans (15.2%), Wickerhamomyces anomalus (13.1%), Candida krusei (6.6%), Candida parapsilosis (4.7%) and others. Rare species such as Candida auris, Candida lambica, Candida orthopsilosis, Candida vishwanathii were identified after the introduction of MALDI-TOF. The minimum inhibitory concentrations of amphotericin B rose significantly from the first to last quarter (0.5%-4.9%). Fluconazole resistance was fairly constant at 7.4%-8.8%. Conclusion Local epidemiology of candidaemia at our centre was distinct regarding prevalence and change of spectrum of species. The identification of rare species was possible after the introduction of MALDI-TOF. With the emergence of multidrug-resistant C. auris and resistance in other species, routine AFST has become imperative.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup Kumar Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Muralidharan Jayashree
- Department of Paediatric Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yaddanapudi Narayana
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Candidemia in Children Caused by Uncommon Species of Candida. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2018. [DOI: 10.5812/pedinfect.11895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Ahmed A, Azim A, Baronia AK. Comments on "Candida glabrata candidemia; an emerging threat in critically ill patients". Indian J Crit Care Med 2015; 19:294-5. [PMID: 25983444 PMCID: PMC4430756 DOI: 10.4103/0972-5229.156501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Armin Ahmed
- Department of Critical Care Medicine, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Afzal Azim
- Department of Critical Care Medicine, SGPGIMS, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|